针对遥感影像中目标方向、目标大小、拍摄角度及场景的多样性导致飞机目标检测精度不高的问题,提出一种基于残差网络(ResNet)的目标检测新方法。首先采集并且标注遥感图像数据,这些数据包含了晴天、薄雾等多种气候条件下的遥感影像;然后构建图形金字塔和模板金字塔进行多尺度检测,并且加入残差网络的全卷积网络结构中不同层的上下文特征信息;最后通过拟合回归进行端到端的训练,得出鲁棒性强,精度高的目标检测网络模型。实验结果表明,该网络模型对于较复杂背景等干扰有较强的鲁棒性,检测精度高达89.5%。