什么是激光测距系统?LiDAR是"Light Detection and Ranging"的简称,是指一边扫描激光,一边照射对象物,通过观测反射光,测量与对象物的距离的光传感器技术。如下表所示,测距传感器有各种...
氧传感器异常时,不仅会使汽车尾气中的有害气体含量超标,而且还会使发动机的燃油消耗增加。 氧传感器故障表现症状是:怠速不稳,耗油过大;氧传感器损坏影响到发动机动力不足,加速迟缓,排气冒黑烟。 氧传感器一旦有故障,将使电子燃油喷射系统的电脑不可以得到排气管中氧浓度的信息,因而不可以对空燃比进行反馈调节,会使发动发动机油耗和排气污染添加,发动机有怠速不稳、缺火、喘振等故障现象。因而,必须立刻地排除故障或更換。 总结氧传感器坏了的症状有:1、车辆发动机故障灯点亮起;2、怠速不稳;3、发动机动力不足;4、加速迟缓;5、排气冒黑烟。 总结氧传感器故障的原因是:1、氧传感器陶瓷碎裂;2、加热器电阻丝烧断;3、氧传感器内部线路断脱;4、发动机控制单元故障。氧传感器是利用陶瓷敏感元件测量汽车排气管道中的氧电势,由化学平衡原理计算出对应的氧浓度,达到监测和控制燃烧空燃比的目的,以保证产品质量及尾气排放达标的测量元件。 ▲发动机(排气系统)故障灯 一. 观察氧传感器外观颜色 01 外部破损的检查 先从排气管上拆下氧传感器,直观检查氧传感器外壳上的通风孔是否被堵塞,陶瓷芯是否破损。如有破损,则应更换新的氧传感器。 观察传感器颜色 通过观察氧传感器顶尖的颜色,可以大致判断出故障的原因。如果发现氧传感器顶尖颜色发生变化,则预示着氧传感器存在故障或故障隐患。故通过观察氧传感器顶尖部位的颜色也可以判断故障原因。具体情况如下,供判断故障时参考: 淡灰色顶尖:氧传感器正常;白色顶尖:由硅污染造成的,应更换新的氧传感器;棕色顶尖:由铅污染造成的,如果严重,应更换新的氧传感器;黑色顶尖:由积炭造成的,在排除发动机积炭后,一般可以自动清除氧传感器上的积炭。 ▲观察氧传感器外观颜色,氧传感器颜色和故障原因 二. 汽车尾气分析仪检测法 01 检测分析采用汽车尾气分析仪检测汽车排放情况时,可以在车辆怠速情况下对汽车的尾气进行检测,并与下表中所列的正常值(以采用FLA-501型电子尾气分析仪检测奥迪A4系列轿车为例)范围进行对比,以此来判断氧传感器的好坏。如果检测值与正常值相差较多,则说明氧传感器及其连接线路不良。如果检测连接线路没有问题,就可以确定氧传感器损坏。02 通常应注意的问题 ① 在尾气分析仪接通工作电源之前,应先将检测仪表可靠接地,并保证其工作电压正常; 三. 指针式万用表检测氧传感器加热器电阻 拔下氧传感器线束插头,采用指针式万用表的R×1挡,两表笔检测氧传感器接线端中加热器接线柱与搭铁接线柱之间的电阻值,该电阻值通常在4~40Ω之间(不同的车型电阻值也不一样,应根据具体车型说明书中的数据)。如检测到的电阻值差别较大,应更换氧传感器。 ▲氧化钛式氧传感器结构原理 ▲氧化锆式氧传感器结构原理 四. 汽车数字式万用表检测氧传感器性能 01 氧气浓度与电压间的关系 汽车发动机电喷系统使用的氧传感器用来监测车辆排放气体中氧气的浓度,并将监测到的氧气浓度转换为电压信号提供给发动机ECU,以判断发动机是否按理论空燃比进行燃烧。当监测到的氧气浓度较浓时,提供给发动机ECU的电压较高;当监测到的氧气浓度较稀时,提供给发动机ECU的电压较低。 ▲汽车氧传感在汽车中的位置和作用 氧传感器正常工作时的典型特征 正常情况下,车辆的排气浓时,氧传感器输出电压为0.8~0.9V,排气稀时输出电压为0.1~0.2V。当氧传感器工作温度低于360℃时(发动机处于开环工作状态),氧传感器处于开路状态,无电压输出。 03 检测与维修 对氧传感器进行预热:首先拆下氧传感器线束,用一根跨接线将此线束与氧传感器相连接,启动发动机,使其在2500r/min转速下运转约90s,用于对氧传感器进行预热,使其工作温度达到360℃以上。 检测操作方法:将汽车数字式万用表功能选择开关置于直流(DC)mV挡,黑线搭铁,红线与氧传感器输出端相连接,用来测量氧传感器信号输出端与搭铁之间的直流电压。正常情况下,在10s之内,表的示值应在100~900mV内跳变8次以上。否则,说明被检测的氧传感器不良或损坏。 可以判断的故障:通过对氧传感器工作性能的检测,可以判断发动机燃油喷射系统是在闭环工作,还是开环工作,或氧传感器是否失效。 五. 指针式万用表检测氧传感器反馈电压 01 检测前的准备 引出检测线:检测汽车氧传感器反馈电压之前,应先拔下氧传感器的线束插头,按照电路图,从氧传感器反馈电压输出接线柱上引出一根细导线,然后插好线束插头,在发动机运转时,在该引出线上测反馈电压。 检测表的选择:在对氧传感器的反馈电压进行检测时,最好采用具有低量程(通常为2V)和高阻抗(内阻大于10MΩ)的指针式万用表。02 检测方法 预热发动机:把发动机热车到正常工作温度(或启动后以2500r/min的转速运转2min)。 连接表笔:把万用表电压挡的负表笔接传感器连接插件的接地线(搭铁端);正表笔接传感器的信号输出引脚,或接氧传感器线束插头上的引出线。以2500r/min左右运转:使发动机以2500r/min左右的转速保持运转,同时检查电压表指针能否在0~1V之间来回摆动,记下10s内电压表指针摆动的次数。03 检测数据与分析 在正常情况下,检查氧传感器两接头(线束侧)端脚之间的正常电压值,应在0.4~0.5V之间,10s内反馈电压的变化次数应不少于6~8次。如果少于6~8次,则说明氧传感器反馈控制系统工作异常。究其原因可能为氧传感器表面积炭,导致灵敏度降低所致。此时,可将发动机以2500r/min左右的转速运转约2min,以清除氧传感器表面的积炭,然后再检测反馈电压。如果电压表指针变化仍然缓慢,则可能为氧传感器本身不良,或ECU反馈控制电路有问题。 六. 动态模拟检测氧传感器反馈电压 检测前的准备 拔下氧传感器的线束插头,使氧传感器不再和发动机ECU相连接,使反馈控制系统处于开环控制状态。 02 拆卸管路与电阻动态模拟 ① 将万用表置于直流电压挡,红表笔直接与氧传感器反馈电压输出接线柱相连接,黑表笔可靠搭铁。 ② 在发动机运转中检测反馈电压,先脱开接在进气管上的曲轴箱强制通风管或其他真空软管,人为地形成稀混合气,同时观察电压表,其指针指示的读数应下降。③ 把上述脱开的管路重新连接好,再拔下水温传感器的接头,用一个4~9kΩ的电阻代替水温传感器,人为地形成浓混合气,同时观察电压表,其指针指示的读数应上升。03 操作加速踏板动态模拟 当采用踩下或松开加速踏板模拟混合气浓氧时,万用表的连接方式与上相同,具体检测操作方法如下: ① 采用突然踩下加速踏板的方法来模拟混合气变浓,同时观察电压表,其指针指示的读数应上升。② 采用突然松开加速踏板的方法来模拟混合气变稀,同时观察电压表,其指针指示的读数应下降。04 故障分析 无论采用哪一种模拟混合气浓度方式来对反馈电压进行检测,如果检测到的氧传感器的反馈电压没有上述变化,均说明氧传感器已经损坏。 05 需要说明的问题 采用上述方法检测二氧化钛式氧传感器时,如果传感器良好,其输出端的电压应以2.5V为中心上下波动。否则,应拆下该传感器并暴露在空气中,当其冷却后采用万用表检测其电阻值。如电阻值为∞,说明传感器是好的,否则应更换新的、同规格的氧传感器。 本文来源:电子开发网
傅里叶变换及谐波 输出的是方波,显示出的却是正弦波或其他波形,这是为什么?在正式揭开谜团之前,我们需要先明白方波是什么。先介绍一位老朋友——傅里叶。傅里叶是19世纪法国著名的数学家、物理学家,是他提出了对后世影响极大的傅里叶变换,在多个领域都有广泛的应用。 微积分,卷积,傅里叶级数,傅里叶矩阵,离散的连续的,周期的非周期的……傅里叶变换是让无数学子头疼的一个知识点,不过我们今天只需了解其物理意义。通俗来讲,傅里叶变换是:任何一个数学函数,都可以写成是多个正弦函数的和。从物理学角度来讲,傅里叶变换是:任何一个复杂的电磁波信号都可以由多个最基本的正弦波信号叠加组成。 综上,可以说方波也是由无数个正弦波组成的。 如下图显示,信号是一个方波,横轴代表时间,竖轴代表幅度,而向频率方向映射过去就得到了时域图像: 傅里叶变换提到过,方波其实就是由基波再加上无数的正弦波共同构成的,那么上图中部这么多的正弦波其实就是基波、三次谐波、五次谐波以及最后的n次谐波。图上竖轴代表幅度,纵轴代表频率,向时间方向映射过去就得到了频域图像。为了更好地理解,我们可以做个实验:使用SDG6000X任意波形发生器输出一个5MHz的正弦波,使用SDS2000X Plus数字示波器的FFT功能后,它的频谱图只有一个峰值点处于5MHz处。 此时,我们直接将输出的正弦波换成方波,从它的FFT频谱图可以看到有很多个峰值点,峰值分别处于5MHz, 15MHz, 25MHz……其实这就是我们刚才所说的基波、三次谐波、五次谐波等。 ►►► 方波为什么不方? 认识到“方波是由无数个正弦波组成”这个本质之后,我们继续来探讨“为什么方波不方”这个问题。在刚才的实验中曾经多次提到一个词——谐波。三次谐波的频率为基波的3倍,五次谐波为5倍,那么N次谐波则为N倍。既然方波是由无数的正弦波组成,那么谐波越多,方波的棱角就越方,显示出来的波形就越接近于理想的方波。 01 示波器带宽 怎么保证正弦波的数量足够多呢?这就涉及到一个参数——示波器的带宽。 当方波被一定带宽的示波器测量时,高于示波器带宽的谐波就被示波器过滤掉了,基本上只留下低于带宽的一些谐波;当谐波少于一定数量时,方波的棱角就变得圆滑,甚至直接变成了正弦波。使用一台带宽为500MHz的SDS2000X Plus数字示波器以及SDG6000X任意波形发生器,首先发出一个频率为60MHz的方波,可以看到此时的波形虽然棱角不够分明,但也能看出是个方波。 我们打开200MHz带宽限制,此时刚才所看到的棱角直接变得圆滑了起来, 形状偏向正弦波更多一些。 经过刚才的试验,我们已经确定了影响方波还原的一个重要指标就是示波器的带宽,有时为了能够完美还原方波,甚至需要示波器带宽在方波频率的10倍以上。 02 探头带宽 需要注意的是,在测量时我们有时需要用到探头,当探头与示波器相连时就组成了一个系统。根据短板原理,一只木桶盛水的多少,并不取决于桶壁上最高的那块木块,而恰恰取决于桶壁上最短的那块,所以即使示波器能够满足方波的需求,而探头达不到要求也无法还原出一个完美的方波。这就引出了影响还原方波的第二个要素——探头的带宽。 03 探头校准 既然提到了探头的带宽影响,就不得不提到“万恶之源”:探头的校准。 在实际使用过程中,示波器探头的准确度会因为长时间使用、物理损耗等原因下降,对测试结果产生误差。为了保证测试结果的准确性,需要对示波器探头进行校准。 首先,将示波器的输入选择打到直流耦合上,并将示波器探头接地夹与示波器地端相连,探头挂钩与示波器校准信号补偿端相连(一般示波器都会带有补偿端),通常是1KHz的方波信号。然后调节水平时基旋钮,使波形能够清晰地显示在屏幕上,观察方波的上下两边是否水平。 如果出现过冲的现象,则需要调节探头上的匹配电容,此时就需要用小螺丝刀进行调节,直至波形上下两边处于水平状态。 04 信号问题 那么说完了示波器和探头的影响,还有一种可能是信号本身出了问题。作为一个理想的,优秀的方波,应该只有“高”和“低”这两个值,这两个值之间应当是瞬时变化的,但是实际上由于物理局限性,这种情况并不可能实现。 信号从最低值上升到最高值然后再下降所花费的时间分别称为脉冲上升时间和脉冲衰减时间。当上升或衰减时间过长,方波本身就变得不那么理想,我们又怎么能够在示波器上看到理想的方波呢?使用SDS2000X Plus数字示波器以及SDG6000X任意波形发生器进行测试,SDS2000X Plus数字示波器本身的上升时间为0.8ns。需要注意的是,我们所设置的方波的上升时间必须大于示波器的上升时间,否则就没有意义了。首先我们设置一个方波,将它的频率设置为1MHz,脉宽为600ns,上升时间为10ns,然后输出信号,现在示波器所显示的是较为理想的方波。 然后保持其他条件不变,逐渐增加其上升时间,可以看到方波原先的棱角慢慢变得圆润了起来。 05 视觉效果 再换个角度来思考,如果一个方波它的上升时间足够短,但是脉宽很小,虽然本质上讲是一个比较理想的方波,从视觉上来看仍然是这样吗?我们来看看实际效果。将刚才所设置的600ns脉宽减小至60ns,此时信号源输出的信号是一个上升时间为10ns,脉宽为60ns的方波。 为了让波形更加清晰,我们减小示波器的水平时基。随着波形被放大,上升时间所在的这段波形也被放大,慢慢地从视觉效果上看,方波发生了形变。 ►►► 总结 方波是由基波再加上无数的正弦波共同构成的,而方波不方在测试测量中是一个常见的问题。本文整理了5个主要因素,分别是示波器的带宽、探头的带宽、探头未校准、方波的上升/衰减时间过长以及视觉效果影响。
开关损耗的测试 如 Figure1 中使用 SiC MOSFET 的开关电路为例。开关损耗的 测量是用电压和电流探测针测量各部分,将得到的电压和电流 波形按点相乘。Figure 2 的斜线部分由于各部分的波形而造成 开关损失。 传输延迟的问题 获取波形时探针和导线的使用会产生传输延迟。根据探针的不 同,延迟时间也不同。上述的开关损失的测量例子,是电压探 针和电流探针的组合,不过,除此之外也有差动有源探头和光 探头与无源探头组合情况。此时也会发生探针之间传输延迟的 误差。这个延迟时间的误差在变化时间长的波形上是没有问题的,但 是像开关波形那样,几十 nsec 以下变化的波形会受到很大的 影响。在 Figure 3 中表示探针之间的传输延迟差对测定结果有影响。在这个例子中,没有注意到电流探测的传输时间比电压探测时 间长,而是直接测试的状态。与正确的波形 Figure 2 相比,Turn on loss 小,Turn off loss 看起来大等错误的结果。根据测试环 境的不同,可能会产生很大的误差。 探针倾斜校正(Deskew) 为了进行正确的功率测量,需要使探针之间的传输延迟时间一 致。这是一种叫做“倾斜校正”的修正方法。Figure 4 左边是测量电压和电流同时上升的信号,不过,象有 时间差一样的现象被观测到。这叫做倾斜误差。数字示波器中有将倾斜误差调整为零的“倾斜校正”功能,请 使用此功能。根据倾斜校正功能,可以在示波器内部自动修正 每一个探针的延迟时间。校正后的波形与 Figure 4 右边的波形 一致。为了更准确地进行倾斜校正,测量仪器制造商还设置了 “调试器”功能。Figure 5 是 Tektronix 公司测试作业图。 事例 不实施倾斜校正的情况,用使用开关波形的测量例子来介绍对 测量结果的影响。Figure 6 是利用电压探查针和电流探查法测试由 SiC MOSFET 构成的开关电路导通时波形的结果。上面是电压波形,中间是 电流波形,下面是开关消耗的电量。倾斜校正前和之后的电流 波形延迟了 24ns。耗电量在倾斜校正前为 794μJ,倾斜校正后 为 1691μJ,因而产生了+113%的误差。 同样 Figure 7 是测得关断时波形的结果。耗电量在倾斜校正前 为 2083μJ,倾斜校正后为 1161μJ,因此产生了-44%的误差。如果存在如此大的误差,在开关动作时会产生几十 W 以上的功 率损耗误差,对散热设计会产生巨大影响。 总消耗的电力量,倾斜校正前为 2877μJ,倾斜校正后为 2852μJ,误差为-90%。在这个测量例子中,偶然地消除了导 通和关断时的误差,看起来是正确测量出来的结果,也有没有 注意到重大测量错误的情况。 总结 ・探针在检测点到示波器的输入之间会发生传输延迟。・传输延迟的时间因探针而异。・如果使用不同种类的指针,在多个频道上进行同步测量,则 有可能获得与实际不同的波形。・不同种类的方针有电压探查针和电流探查针、无源探查针和 主动差动探查针、低电压探查和高电压探查针、频带不同的 探查等各种各样的组合。・为了补偿输送延迟的差异,必须实施倾斜校正。・在受数 nsec 误差影响的测试中,即使是相同种类的探测针也 要进行倾斜校正。
变送器是工业中的重要应用,在很多场景下,变送器都起到了十分重要的作用。为增进大家对变送器的认识,本文将对温度变送器的好坏测量、温度变送器的故障检查等内容予以阐述。如果你对变送器具有兴趣,不妨继续往下...
配电箱的应用极为广泛,在任何一个小区或者实验室,我们都能见到配电箱的身影。在配电箱往期文章中,小编对配电箱与控制箱的区别、配电箱的基本概念等均有所阐述。为增进大家对配电箱的认识,本文将介绍配电箱、开...
配电箱是生活中的常见设备,任一小区、商圈都具有配电箱。对于电工领域的工作者而言,配电箱更是极为熟悉的存在。为增进大家对配电箱的认识,本文将对配电箱和配电柜予以区分,并探讨配电箱和控制箱的区别以及电力...