• 春招季又到了,如何快速找到心仪的工作?

    开文之前,首先问大家两个问题?(1)一直以来,软件相对于硬件,在薪酬这一块都会占有先天的优势,那你会为了这一块先天优势而转向软件吗?

    02-07 94浏览
  • 电容对信号上升沿的直接影响是什么?

    负载电容(IO电容)Cin对信号上升沿的影响 任何芯片IO都有输入电容,通常为2pf左右,加上寄生电容,大约3ps。这个电容相当于负载电容,高速信号在这个电容上建立电压,相当于给电容充电,电容的充电公式是: V0是电容初始电压,Vu充满后的电压值,假设V0=0V。那么上面公式简化为: 当t = RC时,Vt = 0.63Vu; 当t = 2RC时,Vt = 0.86Vu; 当t = 3RC时,Vt = 0.95Vu; 当t = 4RC时,Vt = 0.98Vu; 当t = 5RC时,Vt = 0.99Vu; 我们平时用的时间常数τe指电容两端电压从0V上升到1-1/e=1-37%=63%所需的时间(e=2.71828); 利用上述公式,计算出上升时间10%~90%所需要的时间是: 如果传输线阻抗50Ω,Cin=3pf,则τ10-90=0.33ns。如果信号的上升时间小于0.33ns,电容的充放电效应将会影响信号的上升时间。如果信号的上升时间大于0.33ns,这个电容将使信号上升时间增加越0.33ns 负载电容对信号上升沿的直接影响就是延长了上升时间,如下图: 线路中途容性负载对信号的影响 测试焊盘,过孔,封装引线或者连接到互连线中途的短桩线,都有寄生电容,相当于容性负载。这些容性负载通常是pf级别。 假设这些容性负载导致阻抗突变为25Ω,这导致信号传输到这里,有负的信号被反射,然后入射信号降低。当信号到达负载端后返回,在这个点,又有负的信号返回到负载端。从波形上看就是信号幅度下降,下冲,振铃,上升时间增加。 下面计算一下线路中途负载电容的阻抗: 假设上升沿是线性的dV/dt=V/Tr; 如果C很小,则Zcap很大,如果远远大于50Ω,那么与传输线的阻抗并联,几乎不影响整个传输线阻抗。如果Zcap的值与传输线相当,它与传输线50Ω并联,形成比50Ω小的阻抗,就会引起信号完整性问题。 经验法则是Zcap>5x50Ω,就不会引起信号完整性问题。带入上述公式: 也即是: 假设上升时间是1nf,则允许的电容量为4pf;如果上升时间是0.25ns,则允许的电容量是1pf。 容性突变对信号上升时间的影响有一个经验公式: 50Ω传输线,对于2pf容性突变,传输信号的10-90%上升时间增加约50x2pf=100ps。50%门限的延迟累加约为0.5x50x2pf=50ps。 50%门限的延迟成为延迟累加,用这个衡量电容突变对延迟的影响比较准确。上面的经验公式比较准确,下面是仿真结果,基本能吻合: 要想降低电容突变对信号上升沿的影响,如果电容降低不了,就只能降低传输线阻抗了。 文章转载来源aircity123: https://blog.csdn.net/AirCity123/article/details/104088815?spm=1001.2014.3001.5501

    02-07 77浏览
  • 门电路有几种工作状态

    一、门电路简介 用以实现基本逻辑运算和复合逻辑运算的单元电路称为门电路。常用的门电路在逻辑功能上有与门、或门、非门、与非门、或非门、与或非门、异或门等几种。 二、门电路性质 门电路输入 “门”是这样的一种...

    01-14 374浏览
  • 减速起动机不转故障现象

    起动机常见故障 1、减速起动机不转故障现象 蓄电池电量充足,导线连接正常,接通点火开关后起动机不转。 故障部位:起动机、组合继电器和连接导线与开关等。 排除方法: (1)检查导线的连接情况,开关的工作情况。 (...

    01-14 360浏览
  • 滚珠丝杠的选型

    本文由江苏启尖丝杠制造有限公司 (http://www.qjsg.net)发布! 滚珠丝杠的选型,要求数据彼多,也分一定的步聚,大致可以从以下来选,但彼多细节无法一一述清: 1、确定定位精度 2、通过马达及对速度的要求来确定丝...

    01-14 237浏览
  • 接触器的工作原理

    一些青年才俊,某些基础的电路图,能随意画出,而且画的非常规范,甚至可以熟练的拆装交流接触器。到了实际工作中,可能在一段时间内会一头雾水,出现这样的现象很正常。实践中多总结提炼,多注重下方法,会顿悟的...

    01-14 247浏览
  • 参考的接触器控制电机

    参考的接触器控制电机电路如图1: 图1 接触器简介:接触器触点分布,前四后三。前左三,是主触点,可以接电机线;前右一,是控制端,常开触点。后面三个触点的分布是:上二下一,其中上右和下一是相连的,该设计是...

    01-14 205浏览
  • MOS管电流方向是如何控制的?

    MOS管通过栅极电压控制漏极电流,利用电压比较器(如LM358)实现动态控制。控制电压与参考电压比较,通过循环控制实现电流动态调整及方向控制,方向由MOS管类型(N或P沟道)决定。 在mos管实际使用的过程中,mos管既可用于放大电流,又可以作为电子开关。 那么mos 管如何控制电流方向的呢?mos 管作为电压控制器件,通过加在输入端栅极的电压来控制输出端漏极的电流,即利用对 G 极施加电压以实现对电流的控制。以利用电压比较器(如 LM358)控制 mos管为例,将一个控制电压(接入比较器同相输入端)和一个参考电压(接入比较器反相输入端)同时送入电压比较器(比较器电源接正 12V 和地),比较器的输出经过 5.1K 电阻上拉后接 G 极。在初始阶段,若控制电压比参考电压高,此时 G 极基本上能加到12V,可使 mos管迅速导通,输出电流。由于刚开始电流很小,所以控制电压比参考电压高很多。而随着电流增大逐步达到某个值时,参考电压会迅速上升,当与控制电压接近并超过时,比较器就输出低电平(接近 0V),使得 mos管截止,电流减小。而后电流减少后,参考电压又下降,管子又导通,电流又增大,如此循环往复,实现对电流的动态控制以及电流方向按照 mos管自身类型(N 沟道或 P 沟道)所规定的从漏极到源极或从源极到漏极的流向控制。

    01-14 239浏览
  • 图解:电路的谐振、频率响应

    网络函数 RLC串联电路的谐振 RLC串联电路的频率响应

    01-14 286浏览
  • 做硬件要仔细阅读规格书,原理图要仔细检查

    这一篇文章源于朋友的询问,问我一个关于431的问题,说这个原理图是传感器厂家给的Demo原理图,询问如下图所示的431输出电压是多少,电路图如下:

    01-09 239浏览
正在努力加载更多...
广告