• MSA和SPC是什么?它们之间有什么联系和区别?

    共读好书 什么是MSA? MSA也叫测量系统分析,全称是Measurement Systems Analysis。 数据是通过测量获得的,对测量定义是:测量是赋值给具体事物以表示他们之间关于特殊特性的关系。这个定义由C.Eisenhart首次给出。赋值过程定义为测量过程,而赋予的值定义为测量值。测量系统分析(MSA)的定义:通过统计分析的手段,对构成测量系统的各个影响因子进行统计变差分析和研究以得到测量系统是否准确可靠的结论。 为了理解MSA的含义,我们可以把它分解成两个部分,一个是“测量系统”,一个是“分析”。 什么是测量系统? 我们知道测量就是一个对被测特性赋值的过程,测量系统其实就是这个赋值过程涉及到的仪器或量具、标准、操作、方法、夹具、软件、人员环境等要素的集合。系统中各个要素对测量结果的影响可能是独立的,也可能是相互影响的。 什么是“分析”? 测量系统分析的根本对象不是零件,而是测量系统输出的变差。“分析”代表了一系列的分析方法。 MSA的目的是什么? MSA的目的就是通过测量系统输出变差的分析,判断测量系统是不是可接受的,如果不可接受,进而采取相应的对策。需要注意的是,世界上没有绝对完美的测量系统,因此测量系统误差可以减少但不能绝对消除。在质量领域我们把变差视为头号大敌,认为变差小是一种美。然而在自然界,变差就是多样性,本身就是一种美。 MSA的方法论是什么? MSA涉及多种方法,每一种都跟统计有关。对大多数人来说,这些方法往往难以被记住,包括我自己。为了便于理解记忆,我们先对“变差”进行剥丝抽茧,即进行结构,看看那些指标可以用于表征测量系统的测量变差。 第一层: 测量观察到的总变差=零件间变差+测量系统误差,其中零件间变差是指不同零件间客观存在的真实差异,由零件本身决定;测量系统误差就是我们MSA的对象,即由测量系统能力决定的测量偏差。 第二层: 测量系统误差=精确度+准确度,精确度研究的是测量变差的波动范围,没有考虑与真值的差异;准确度研究的是测量变差离真值(或参考值)的差异。 第三层: A、精确度=重复性+再现性;B、准确度=偏倚+稳定性+线性。 MSA的研究变差的指标其实就是上面等号右边的5个,所以MSA方法论包括了: 重复性研究: 同一个人,用同样的设备/方法/设置,在相同的环境,测量同一个产品多次所观察到的变差;主要研究设备导致的误差。理解举例:你去买黄金饰品的时候,同一个营业员对你看上的金饰用相同的量具3次称重,你发现3次测量结果波动很大,这就是重复性不好。 再现性研究: 不同的人,用同样的设备/方法/设置,在相同的环境,测量同一个产品所观察到的变差;主要研究人导致的误差。理解举例:接上面的例子,这时另外一个营业员过来用同样的工具、方法对同样的金饰称3次,发现和第一个人测量的平均值比,此人的测量平均值差异也很大,那么就是说的再现性的问题。 偏倚研究: 观测到的均值和基准值(参考值)之间的差异。理解举例:金饰的真值假设为50g,而今天你测量10次得到平均值为45g,那么5g的差异就是偏差。 稳定性研究: 在不同时间区间测量时得到的偏倚大小的情况,好的稳定性意味着什么时候测量偏倚都差不多。理解举例:接上面例子,一个月后,用同样的量具测那个真值50g的饰品10次,得到平均值40g,比一个月前少了10g,这说明稳定性很不好。 线性研究: 如测量结果随量程的变化始终保持很小的偏倚,那么测量系统的线性就很好。理解举例:上面那个量具,第一次测量真值50g的金饰偏倚假比为0.5g,第二次测量真值200金饰得到偏差为5g,也就是说随着量程变大,变差也越来越大,这个系统的线性非常糟糕。 什么是SPC? 统计过程控制(简称SPC)是一种借助数理统计方法的过程控制工具。它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。 它认为,当过程仅受随机因素影响时,过程处于统计控制状态(简称受控状态);当过程中存在系统因素的影响时,过程处于统计失控状态(简称失控状态)。由于过程波动具有统计规律性,当过程受控时,过程特性一般服从稳定的随机分布;而失控时,过程分布将发生改变。 SPC正是利用过程波动的统计规律性对过程进行分析控制。因而,它强调过程在受控和有能力的状态下运行,从而使产品和服务稳定地满足顾客的要求。 实施SPC的过程一般分为两大步骤: 步骤一: 用SPC工具对过程进行分析,如绘制分析用控制图等;根据分析结果采取必要措施:可能需要消除过程中的系统性因素,也可能需要管理层的介入来减小过程的随机波动以满足过程能力的需求。 步骤二: 用控制图对过程进行监控。 控制图是SPC中最重要的工具。 目前在实际中大量运用的是基于Shewhart原理的传统控制图,但控制图不仅限于此。近年来又逐步发展了一些先进的控制工具,如对小波动进行监控的EWMA和CUSUM控制图,对小批量多品种生产过程进行控制的比例控制图和目标控制图;对多重质量特性进行控制的控制图。 MSA和SPC之间的关系? 对于计量值而言,需要使用有效的测量工具来取得需要控制特性的具体数值,SPC图对MSA有很高的要求。通常, 要求GR&R不大于10%。而在进行测量系统分析之前,要事先确认测量仪器的分辨率达到1:10法则,所以先MSA,后SPC是必要的行事准则,如果MSA分析结果显示测量系统的分辨识率本身不合格,那么收集的数据制成SPC控制图就不能有效的识别过程的变差。而很多企业而言,因为此点导致做出来的SPC控图没办法有效的应用,甚至造成不必要的错误管控。 MSA手册提出,把测量过程当做是一个制造数据的过程,要评估数据本身的质量,可以拿测量过程做试验研究,评估测量过程中测量误差是否足够小。所以,通常在进行SPC分析之前,需要先考虑MSA。 MSA和SPC区别: 1、MSA是SPC的基础和根据,只有MSA可依赖了,SPC工作才能意义。 2、MSA使用数理统计和图表的方法对测量系统的分辨率和误差进行分析,以评估测量系统的分辨率和误差对于被测量的参数来说是否台适,并确定测量系统误差的主要成分。而SPC用来确定过程的统计控制界限,判断过程是否失控和过程是否有能力,为过程提供一个早期报警系统,及时监控过程的情况以防止废品的发生,减少对常规检验的依赖性, 定时的观察以及系统的测量方法替代了大量的检测和验证工作。 3、MSA了解测量过程,确定在测量过程中的误差总量,及评估用于生产和过程控制中的测量系统的充分性。MSA促进了解和改进(减少变差),对过程做出可靠有效的评估。SPC依其特性所收集的数据,通过过程能力的分析与过程标准化,发掘过程中的异常,并立即采取改善措施,使过程恢复正常的方法。

    03-05 279浏览
  • STM32实例教程,带你了解FSMC的功能和用法

    FSMC 简介,STM32F103 100 引脚以上系列芯片都带有 FSMC 接口

    02-26 106浏览
  • HMC与HBM的竞争:HMC为何落败?

    导 读 HMC混合内存立方体,HBM高带宽内存,都曾以取代DDRx为己任,两者名称接近,结构类似,并且都有3D TSV 加持,性能均超过同时期DDRx的数倍。 在AI大潮的驱动下,HBM如日中天,HMC却已悄然隐退,是何原因造成了如此大的差异?这篇文章就和大家一起分析其中的缘由。 DRAM Technology 1 HMC HMC (Hybrid Memory Cube) 混合内存立方体,曾被视为一项革命性的技术而寄予厚望。 HMC由美光和英特尔合作开发,最初设计的目的是为了彻底解决DDR3所面临的带宽问题。 HMC于2011年推出,对于美光来说,其意义非凡,这将是击败三星、海力士两大韩厂的独门武器。 HMC 标准中,4 个 DRAM Die通过3D TSV连接到堆栈底层的逻辑控制芯片Logic Die,其示意图如下所示: TSV 技术诞生于1999年,最早在内存行业实现商用,是先进封装领域中最为重要的技术,没有之一。 2011年,HMC正是借着TSV技术的东风,获得该年《微处理器报告》最佳新技术奖,一时风头无两。 HMC设计中,从CPU处理器到存储器堆栈的通信是通过高速 SERDES 数据链路进行的,该链路会连接到 DRAM 堆栈底部的逻辑控制器芯片。处理器没有集成到堆栈中,从而避免了芯片尺寸不匹配和散热问题,却带来了一个新的问题,就是处理器离存储器堆栈比较远,这日后也将成为HMC的重要短板。 HMC本质上其实是一个完整的 DRAM 模块,可以安装在多芯片模块 (MCM) 或 2.5D 无源插接器上,从而更加贴近 CPU,实际上却没有人这么做。除此之外,美光还推出了一个"远存储器"的配置,在这一配置中,一部分 HMC 连接到主机,而另一部分 HMC 则通过串行连接到其他 HMC,以此来形成存储器立方体网络。 在许多人担心的延迟问题上,美光表示,虽然HMC的串行链路会略微增加系统延迟,但整体的延迟反而是显著降低的,HMC 比 DDR4 提高了约 3 倍的能效(以 pj/bit 为单位)。 DRAM Technology 2 HBM HBM (High Bandwidth Memory ) 高带宽内存,将很多个DRAM芯片堆叠在一起后和GPU封装在一起,实现大容量,高位宽的DRAM组合阵列。 首先,HBM垂直堆叠内存芯片,4 个 DRAM Die通过3D TSV连接到堆栈底层的逻辑控制芯片Logic Die,这点和HMC是相同的。然后,这些DRAM堆栈通过Interposer中介层连接到 CPU 或 GPU。 虽然这些 HBM 堆栈没有与 CPU 或 GPU 进行3D集成,但它们通过中介层紧密而快速地连接在一起,以至于 HBM 的特性与片上集成 RAM 几乎没有区别。 HBM由和海力士和AMD共同研发,其推出时间为2013年,被HMC晚了两年。 HBM使用了 128 位宽通道,最多可堆叠 8 个通道,形成 1024 位接口,总带宽在 128GB/s 至 256GB/s 之间。 DRAM Technology 3 HMC vs HBM 比较HMC和HBM,我们可以看出,二者是何其的相似,都是DRAM堆叠在逻辑控制器之上,都采用了3D TSV技术,都是由大厂推出(HMC:美光+英特尔;HBM:海力士+AMD),HMC推出时间2011年,HBM为2013年,也很接近。 今天HBM如日中天,HMC却已经淡出江湖,是何缘由呢? 笔者分析大致有以下两个原因:1.结构差异,2.行业标准。 结构差异 虽然HMC和HBM结构相似,都是将DRAM堆叠在逻辑控制器之上,并且都采用了3D TSV技术,但是,HBM却多了一层Interposer,通过Interposer将DRAM堆栈和GPU紧密集成在一起。可以说有GPU的地方,必有HBM。 HBM通过GPU确定了自己的地位,AMD和英伟达先后都选择了HBM来作为自家显卡的内存,正赶上人工智能的大潮,不火都难。 HMC将内存堆栈放置在距离CPU/GPU 很远的位置的方法意味着3D芯片堆叠和固有的低延迟的大部分优势都会丧失,毕竟物理定律是谁也无法逃脱的,信号的传输速度只能那么快。远,就意味着更大的延迟。 假设分别包含HBM和HMC的系统,我们来绘制最小的立方体,并检查其功能密度,即单位体积内包含的功能单位的数量,可以简单理解为单位体积内包含的晶体管数量。可以看出HBM要明显大于HMC,即HBM的功能密度更高,因此,作为先进封装的重要指标来说,HBM的先进程度更高。在热量能够散出的前提下,紧凑紧凑再紧凑就是先进封装的设计原则,为此,我提出了功能密度定律,作为描述系统集成度的重要依据。详见拙著《基于SiP技术的微系统》。通过3D TSV 集成,垂直堆叠芯片,解决了芯片上晶体管等微小组件的一个重要问题:距离。通过将器件垂直堆叠在一起,可以最大限度缩短它们之间的距离,从而减少延迟和功耗。这一点上,HMC和HBM都做到了。然而,HMC没有 Interposer,无法和CPU/GPU进行紧密的集成,因而影响其功能密度, 而HBM却通过Interposer将内存堆栈和CPU/GPU进行紧密集成,有效地提升其功能密度,从而在竞争中胜出。HMC是典型的3D集成技术,而HBM则更高一筹,被称为3.5D集成技术,别小看这0.5个维度,它能带来更紧密的集成度,从而提高系统的功能密度。 从结构上来说,HBM真正击败HMC的原因是什么呢?距离。 有人问,HMC败北HBM是因为它是3D封装而HBM是3.5D吗?是的,确实可以这么理解。 行业标准 结构上的短板,使得HMC必然在功能密度上比不上HBM,在HBM推出后,HMC颓势已显。而给HMC致命一击的是,HBM推出没多久,就被定为了JEDEC行业标准,而HMC虽然比HBM早两年推出,却只有一个HMCC在苦苦支撑。一个是行业内主要科技公司都认可的大组织,一个是美光自己拉起来的小圈子,比赛还没正式开始,胜负就已经分出。 拥有数百家会员公司的JEDEC奉行一公司一票与三分之二多数的制度,从而降低了标准制定被任何一家或一批公司所把控的风险。也就是说,JEDEC标准的话语权并不由巨头所掌握,只有大家真正认可,才会最终被推行为正式标准。2018年,人工智能开始兴起,高带宽成为了内存行业的重心,和GPU紧密绑定的HBM赢得了最大的市场,主推该标准的海力士与三星成了大赢家,HBM的大客户英伟达和AMD也因此而赚的盆满钵满。HMC早就没有了2011年刚推出时的风光,门可罗雀,美光也不再执迷不悟,于2018年8月宣布正式放弃HMC,转向HBM。美光毕竟晚了一步,市场份额明显落后于两家韩厂,根据最新数据,SK 海力士占据全球 HBM 市场 50% 的份额,位居第一;三星紧随其后,占据 40% 的份额;而美光屈居第三,仅占据 10% 的市场份额。人工智能的兴起,或许是压倒HMC的最后一根稻草。事到如今,美光也不由地感慨:既生瑜何生亮? 在半导体江湖,新技术层出不穷,波浪荡漾的湖面,星星点点,闪耀着科技的光芒。有些技术曾经光芒四溢,最终却黯然退出,有些却能长时间屹立不倒,并推动人类科技的伟大进步。成王败寇,半导体江湖也是如此。 声明:本文由半导体材料与工艺转载,仅为了传达一种观点,并不代表对该观点的赞同或支持,若有侵权请联系小编,我们将及时处理,谢谢。

    02-23 98浏览
  • 解锁你的脑力之门:揭秘内存的秘密武器

    内存是电脑的重要组件之一,缺少内存,电脑将无法运行。凡是每天使用电脑的朋友,都在和内存打交道。但是,大家对于内存真的十分了解吗?为增进大家对内存的认识,本文将对内存的作用以及虚拟内存予以介绍。如果你...

    02-21 73浏览
  • 单片机运算器了解吗

    单片机的使用,能够早就很多有意思的产品。通过单片机,我们能够造出一个独立的电子器件。为增进大家对单片机的认识,本文将对单片机的基本结构予以介绍。如果你对单片机具有浓厚兴趣,不妨和小编共同继续往下阅读...

    02-21 77浏览
  • 什么是程控交换机?

    程控交换机,全称为存储程序控制交换机(与之对应的是布线逻辑控制交换机,简称布控交换机),也称为程控数字交换机或数字程控交换机。通常专指用于电话交换网的交换设备,它以计算机程序控制电话的接续。程控交换机...

    01-30 92浏览
  • 什么是NAS与SAN?

    NAS是功能单一的精简型电脑,因此在架构上不像个人电脑那么复杂,像键盘、鼠标、荧幕、音效卡、喇叭、扩充漕、各式连接口等都不需要;在外观上就像家电产品,只需电源与简单的控制钮。NAS在架构上与个人电脑相似,但...

    01-30 85浏览
  • 什么是DMA方式?

    DMA方式,Direct Memory Access,也称为成组数据传送方式,有时也称为直接内存操作。DMA方式在数据传送过程中,没有保存现场、恢复现场之类的工作。由于CPU根本不参加传送操作,因此就省去了CPU取指令、取数、送数...

    01-30 79浏览
  • 汽车车灯和雨刷器

    车灯和雨刷器(电器初级)

    01-29 85浏览
正在努力加载更多...
广告