01 前言 对电子工程师来说,不理解电感就好比做菜不懂盐巴味精一样,显然理解电感是必备的。 02 电感的特性 先来看这个电路图,闭合开关右侧灯泡最先点亮,然后左侧灯泡相继点亮;断开开关,右侧灯泡立马熄灭,而左侧灯泡继续亮了一会才熄灭。关注公众号硬件笔记本 通过这个现象,可以发现电感有两个作用。关注公众号硬件笔记本 03 为什么电流不能突变? 先来回忆一下右手定则,即磁感线穿过手掌,大拇指所指方向为导体切割方向或运动方向,四指所指方向为感应电流方向。关注公众号硬件笔记本 现在有两根线圈挨在一起,已知下面线圈的电流方向 磁场由里向外扩散,假定磁场是固定的话,那上面的线圈相对运动的(从上往下),根据右手定则,切割方向是向下的,所以大拇指朝下,那四指所指方向就为电流方向,也就是和下面线圈产生相反的电流。关注公众号硬件笔记本 电流减小的话,相应的磁场也会减小,假定磁场是固定的,那上面的线圈就相对运动(从下往上),根据右手定则,大拇指朝上,四指所指为电流方向,也就是和下面的线圈产生相同的方向了 总结:电流增加会产生相反方向的电流;电流减小会产生相同方向的电流(也就是说当磁场增加的时候,会产生相反的磁场;磁场减小的时候,会产生相同的磁场),这就是所谓的‘增反减同’‘来拒去留’ 也就是1号和2号的电流相反,2号阻碍1号 2号电流和1号3号电流相反,阻碍2号电流 这种现象称为自感。关注公众号硬件笔记本 现在闭合开关,电感产生相反的电流阻碍通过,所以左侧灯泡缓慢点亮(也就是电能转磁能) 断开开关,电感产生相同的电流,短暂给左侧灯泡提供电流,所以具备短暂储能的作用(也就是磁能转电能) 04 为什么会隔交通直? 因为直流电产生的电流是固定的,相应的磁场也是固定的,那这样就不存在切割磁感线,也就不会产生感应电流,而交流电产生的磁场是周期变化的,存在切割磁感线,会产生感应电流。关注公众号硬件笔记本 PS:直流电只有在通电或断电产生变化磁场 总结 电感电流不能突变是有磁场阻碍;能短暂储能是将产生时的磁能被转为电能。
金属箔电阻在的相关资料并不多,查阅各厂家官网,发现各厂家对此类电阻的命名都不尽相同。例如,风华将其归为合金电阻,而国巨等厂家则定义其为电流检测电阻。在相关文献资料中,以金属箔电阻为关键词能搜索到的文献最多,其原因应该是最早发明并推出此类电阻的厂家Vishay将这一电阻称为Metal Foil Resistor。基于此,后文将采用金属箔电阻这一名称进行讨论。 金属箔电阻的结构如图1所示,此类金属箔电阻采用陶瓷基板,箔片位于电阻背面,这样可以使得箔片更贴近PCB,获得更好的散热性能以及更小的ESL。 《高精度标准电阻的研制》一文中指出,金属箔电阻的箔片材料大致可分为锰铜合金和镍钴合金两大类。其中,锰铜材料具有稳定性好、与铜接触电阻小、容易加工、容易焊接等优点,是标准电阻中广泛采用的一种材料,但是它的温度系数比较大。镍钴合金具有硬度高、耐腐蚀、电阻率高、长期稳定性好、温度系数小等优点。但是其加工技术和工艺要求较高,加工成本也比较高(但KOA的官网上《电阻器的基础》一文中给出的数据与此文存在冲突,见图2)。一次保护层为聚酰亚胺,金属箔电阻没有印刷的电极,但是箔片的电极位置上镀有一层金属铜,其作用后文详述。其他构造与厚膜电阻、薄膜电阻类似。 图1 陶瓷基板的合金电阻 图2 主要的金属材质的电阻率和电阻温度系数(源自KOA) 还有一种金属箔电阻以聚酰亚胺(PI膜为基板),其结构如图3所示。相较于陶瓷基板的金属箔电阻,该类电阻出来基板材料不同且没有一次保护层(只以风华的规格书为例)以外,其余方面未见明显差异。采用聚酰亚胺膜是因为其具有优良的耐温特性及电气绝缘性能,厚度比陶瓷基板薄。因此,在相同封装下可以贴更厚的金属箔片,从而做到更低的阻值;也有设计在聚酰亚胺膜上增加导热层,增加器件的散热能力,从而实现更高的功率。另外,小尺寸电阻使用陶瓷基板时存在易崩碎、形变等问题,使用聚酰亚胺膜也可以改善此问题。 图3 聚酰亚胺基板的金属箔电阻 在网上的相关资料中,较多提到了VPG公司(从Vishay独立出来的公司)推出的Z- Foil合金电阻,其TCR可以做到±0.2ppm/℃,精度可达±0.01%。这个规格上比上述材料的金属箔电阻的规格要高出不少,当然价格也是十分昂贵,其规格参数如图4所示。 图4 VPG电阻规格参数表 但是这里有一个疑问,在整理薄膜电阻的资料时,部分文献如《精密薄膜固定电子器件研究》、《直流磁控溅射铂电阻薄膜》等提到,在一定厚度范围内,薄膜电阻的膜厚越厚,TCR越高,原因是金属本身的TCR为正,但由于薄膜或多或少存在缺陷,在薄膜不连续部分存在类似半导体靠隧穿效应导电的部分,这个特性使得薄膜电阻在温度升高时,载流子越容易被激发,即其TCR为负,所以整体上,薄膜电阻的TCR可以做到很低,要由于金属块。金属箔从厚度上看远比电子的平均自由程大,所以不存在尺寸效应,理论上其TCR要劣于薄膜。但现在金属箔电阻的TCR可以做到如此之低,说明VPG公司在材料上还是比较领先的。 查看其他家的金属箔电阻产品,可以看到以上推论可以成立,以Vishay公司的官网数据为例,对比厚膜、薄膜、金属箔电阻的参数如图5所示。可以发现金属箔电阻的阻值范围比较窄,一般都是1Ω以下的低阻值,甚至是毫欧级的超低阻值。但是其他参数并不十分突出,TCR、精度都比不上薄膜电阻,与厚膜电阻相当。 图5 Vishay官网电阻规格对比 那么金属箔电阻有什么特点?为什么需要使用金属箔电阻呢? 超低阻:仔细对比厚膜电阻和金属箔电阻可以发现,金属箔电阻的阻值可以做到更低,并且在不同阻值下,同系列的金属箔电阻的TCR都可以维持在同一水平。而同系列的厚膜电阻阻值越低,TCR也越高(参见风华的产品手册)。 功率大、噪声低、稳定性好:金属箔的箔片厚度在微米级,因此其通流能力比较强,能承受较大功率;相较于其他电阻,其因电流产生的温升达到稳定的时间也较短,热稳定性强,长期的阻值稳定性方面也有较大优势;在噪声方面,由于厚膜电阻的电阻体存在玻璃相和导电相,电流路径通过的是在玻璃相粘接的导电颗粒,这些导电颗粒的接触点形成了一个高阻点,使得电流噪声较大。并且,这些触点对因膨胀失配、受潮膨胀、机械应变和电压输入水平而产生的任何形变都很敏感,都容易放大噪声。当薄膜电阻要均匀得多,但是薄膜电阻或多或少都存在缺陷或沉积不均匀的问题,这些也会导致一定的噪声。而金属箔电阻的箔片十分均匀,且连续,电流在合金的晶界间穿过。从一个或多个金属晶体到另一个的晶间电流路径涉及通过晶界的多个且较长的电流路径,从而降低了噪声产生的可能性。 图6 金属箔电阻(左)与厚膜电阻(右)的电流路径对比 ESL和ESC低:电阻的等效模型如图7示所示,实际的电阻都存在寄生参数,那么,这些寄生的电容和寄生电感是怎么来的呢? 图7 电阻等效模型 寄生电容容易理解,电阻的两个电极可视为电容的极板,因此存在寄生电容。但是一般情况下,电感都有线圈,形成了闭合回路,而电阻从形态上来看,只是一根直导线。那么寄生电感是怎么出现的呢?由右手定则可知,当电流流过导线时,在导线周围会产生环形磁场,如图8所示。当导线的电流发生变化的时候,磁场的大小也会随之发生变化,但是根据楞次定律,磁场的变化时会产生感应电流,其作用为阻碍磁场变化,以图8为例,原电流从左往右流,产生的磁场在导线上半不符是垂直纸面向外,下半部分则相反,当电流变大时,其感应的磁场是垂直纸面向内,根据右手定制,感应电流的方向是从右往左,阻碍电流增加。这种特性与电感阻碍电流变化的特性是一致的,这就是寄生电感的来源。 图8 直导线的环形磁场 那么金属箔电阻是如何做到低寄生参数的呢?VPG公司的文档《Ten Technical Reasons to Choose VFR Resistors for Your Circuit - Promotional Material》以及《Research on Pattern Design of Metal Foil Resistor》两篇文档指出,通过设计合适的电阻图案,有利于达成降低ESL和ESC的目的。如图9所示的S形图形使得ESC分段并且为串联关系,使得ESC大大减小。对ESL部分,部分资料认为S形的图案大大增加了电流路径并且减小了通流的面积,因此其ESL会增加。但分析其中的电流路线可以发现,在相邻的线路中,电流路径是相反的,因此电流产生的磁场会有互相抵消,所以ESL应该是会降低的。另外,合金箔电阻一般都会让箔片至于底部,这样可以减少环路面积和底部部分的电感,达到减少寄生电感的目的(见《Passive SMT Mounting Techniques: Face-up vs Facedown and Performance Trade-offs.》)。 图9 合金电阻图形设计 图10 箔片置于底部的优势 基于以上特性,金属箔电阻在电流检测(低阻值、大功率、热稳定性高,在采样时可以实现快速精准采样,并且对电路本身的影响比较小。另外,金属箔电阻在电流发生突变的时候,感应电压也很低,使采样更精确)、音频设备(噪声低、寄生参数小,可以实现声音的高保真及纯净度)、精密测量仪器(稳定性高,长期工作时可以最大限度的降低系统误差)等方面的应用具有较大优势。 制程工艺 主要参考CN207993600U和CN107230537B进行讨论。 贴金属箔:在陶瓷基板上贴一层粘合膜,通过加热加压的的方式,将金属箔与基板牢牢结合。如果贴合不牢,易出现箔材翘起的情况,影响电阻的稳定性。CN207993600U给出了一种高温烧结的方式,对合金箔进行镀铜处理(其提到直接使用合金材料比较难实现键合),后进行加压整平,再将合金箔和基板放在一起烧结,使得金属箔表面形成氧化铜与氧化铝进行反应键合。 掩膜印刷:在箔材上印刷光刻掩膜浆料并固化。 曝光显影:使用图形底片对眼膜进行遮盖后进行曝光,用显影液进行显影,得到想要的掩膜图形。 蚀刻:使用蚀刻液对箔片进行蚀刻,形成电阻图形。 掩膜制作:再次印刷掩膜并固化。此次曝光、显影使用的图形需要露出箔片的电极部分,其余电阻图案需用掩膜覆盖。 电极镀铜:通过挂镀的方式对箔层电极部分进行镀铜。镀铜后对掩膜进行脱模。 调阻:金属箔电阻有两种调阻方式,一是机械调阻,利用金刚石磨棒对电阻体进行打磨、修整;另一种是激光调阻,一般会在电阻图形上设置多个调阻点,以提升调阻效率。 一次保护膜印刷:印刷聚酰亚胺涂层,聚酰亚胺可以和箔片形成很好的结合,避免出现空隙,提升电阻的耐湿性和耐腐蚀能力。 二次保护层印刷:印刷环氧树脂,提高产品的绝缘性、耐机械应力及耐腐蚀的能力。 后面的折条、溅射、电镀、字码印刷、测试等工序与其他电阻一致。在此不赘述。 通过其制程工艺,可以发现金属箔电阻的工艺有以下特点: 无电极印制工序:金属箔片本身已覆盖了陶瓷基板,电极可以在电镀在箔片上,且由于箔片放在电阻背面,天然形成背电极,可以满足焊接需要。正面因为不存在电阻体,所以没有电极也无所谓。但是CN107230537B指出印刷正面和背面电极(其正面背面间隙材料均为树脂浆料)能够使绝缘基板两端侧处的电极饱满,并且保证电阻的完整性,有利提升金属箔电阻的功率。 箔片镀铜:金属箔片本身可以导电,也可以形成电极,箔片镀铜好像多此一举,但是箔片镀铜是在调阻前,其目的是为了让其箔片的表面更加光滑,并且铜的电阻率比合金要低,因此镀铜可以降低箔片的接触电阻。对于超低阻值的金属箔电阻来说,接触电阻可能对电阻的测量有较大影响,不镀铜可能影响调阻的精度。 一次保护层印刷:厚膜和薄膜电阻的一次保护层印刷都是在调阻前,而金属箔电阻是在调阻后,原因应该是因为箔片在调阻不想厚膜和薄膜电阻那么容易受到影响,调阻时无需对电阻体进行额外保护。有的金属箔电阻甚至没有一次保护层。而且,这里印刷一次保护层的目的是为了避免空隙,提升电阻的耐湿热和耐腐蚀能力,放在调阻后可以保证保护膜的完整性,是较优的选择。
薛宏伟 周晓龙 刘永刚(河北普兴电子科技股份有限公司)摘要 :硅外延片非常适合且已经被广泛用作制备功率半导体器件,但其供给远远不能满足市场需求。硅外延片清洗后,可能会造成表面有机物、颗粒、金属污染物和水痕残留,直接影响到功率半导体器件用晶圆加工过程的稳定性和加工产品的最终良率。从人机料法环等环节,分析了这些影响因素的来源和实际生产过程中使用的方法。利用新型清洗技术,可以减少传统清洗工艺对环境的影响。根据清洗机和工艺的实际情况,及时发现和解决清洗遇到的问题,才能保证清洗质量稳定在较高的水平,满足晶圆加工厂家的要求。0 引言功率半导体器件是电力电子行业应用非常广泛的基础元器件。随着人类文明和时代的进步,新能源、物联网、高铁、变频家电等领域的新兴需求日益增长,驱动着功率半导体器件的研制和应用水平水涨船高。中国是全球最大的功率半导体器件消费国家,功率半导体器件细分的主要几大产品如 IGBT、MOSFET 等,供给远远不能满足市场需求。硅是半导体行业最主要的基础材料,与晶体原生缺陷富集的硅抛光片相比,硅外延片表面的外延层中氧含量也更低,更适合并且已经被广泛用作制备功率半导体器件。清洗作为半导体产业中的一环,其重要性已经越来越被人们所认知。硅外延片清洗质量的好坏,直接影响到后续晶圆加工过程的稳定性和加工产品的最终良率,因此行业持续对清洗后的硅外延片表面质量提出了越来越高的要求。如何更有效地去除硅外延片表面的有机物、颗粒、金属污染物和粒状水痕,已经成为硅外延片生产厂家共同面临的一个重要课题。1 影响因素分析硅外延片清洗普遍采用 RCA 法,利用去离子水和化学液,加以兆声、甩干和加热等方式,将外延片表面的外来沾污去除。但是清洗过程中,如果在人、机、料、法、环等环节处理不当,可能就会造成表面残留有机物、颗粒、金属污染物和水痕等影响功率半导体器件制造过程和制造良率的不佳因素。比如,颗粒的粒径和数量直接影响晶圆加工后的成品率,金属会造成少数载流子寿命缩短等问题。为了使清洗后的外延片能满足下游功率半导体器件厂家的要求,需要对这些因素的来源进行分析,并对这些因素在人、机、料、法、环等环节中造成的问题进行规避,提高清洗质量。1.1 有机物有机物沾污包括硅外延片表面的碳和以成键的形式与硅结合的碳。它的来源很广泛,如人的皮肤油脂、防锈油和润滑油以及蜡等。这些物质通常都会对加工进程带来不良的影响。另外,表面附着的有机物也会影响硅片表面沾污的清洗效率,阻止化学清洗达到预期效果。硅外 延 片 表 面 的 有 机 物 去 除 通 常 会 用 到 SPM(H2SO4+H2O2+H2O)化学液,SPM 可以将有机物氧化生成 H2O 和 CO2。但是 SPM 化学液的过量使用对环境有不利的影响,因此氧化还原势更高的臭氧(O3)逐渐被人们用来去除有机物。针对有机物沾污,关键是加强对清洗过程中人为环节和清洗机设备的管控,对人为环节的管控包括清洗全程使用真空镊子等夹具和机械手持片等,对清洗机设备的管控包括机械部分使用的防锈油或润滑油绝对不能造成清洗机台面和清洗槽的沾污等,同时清洗机所使用的化学液要单独存放,不能与任何有机物混放。通过以上管控措施,即使不特别使用 SPM化学液或臭氧清洗,也不会造成有机物对清洗过程的影响和最终有机物的残留。1.2 表面颗粒颗粒是硅外延片最常见的一种表面缺陷,不仅会直接带来器件的失效,还会破坏布线的完整性,解决好颗粒问题是提高外延成品率的关键。硅外延片表面上的颗粒,有的是在衬底上就存在,“开盒即用”长完外延后,可能就会在原有的颗粒位置上出现点状的颗粒;有的是在外延过程中或生长结束后,由于反应腔室的环境引入的颗粒,造成外延片表面出现大小不一的颗粒 ;还有的是在外延片测试、存放、运输等过程中增加的颗粒。在应用广泛的湿法清洗环节中的SC1(或 APM :NH4OH+H2O2+H2O)化学液主要是用来去除外延过程结束后附着在硅外延片表面颗粒的,兆声是靠化学液清洗槽下方的振板产生的,声波在液态介质中传播产生非周期性声波流并作用在硅外延片表面,使得表面附着的滞留层厚度减小,从而使 SC1 化学液清洗不掉的粒径较小的颗粒更容易被声波流去除,然后被化学清洗液带走,达到增加清洗效果的目的。SC1 化学液的浓度(特别是 NH4OH 的浓度)和温度同样会影响去表面颗粒的效果,SC1 的浓度和温度过低,会降低化学液去颗粒的能力,但浓度和温度过高,又会加速化学液的挥发并且影响硅外延片表面的粗糙度,因此为了达到平衡,可以利用化学液补液系统进行补液,补液量范围可以控制在 100~200 ml/h,另外还可以在石英槽上部进行遮盖减少挥发。为了进一步减少洗后的表面颗粒,可以采用以下途径 :增加预清洗步骤,增加 SC1 化学液清洗槽,增加兆声功率、循环化学液等手段 ;提高石英槽内花篮材质的硬度 ;提高清洗间、测试间和外延片存放环境的净化等级 ;提高清洗槽内的纯水和化学液的颗粒水平。利用上述方法,硅外延片可以做到清洗后40 nm 颗粒增加小于 30 个,6 英寸硅外延片表面 0.2 um颗粒小于 10 个,8 英寸硅外延片表面 0.2 um 颗粒小于20 个。利用相同来源的硅衬底在同一个外延设备上生长相同参数的外延片,清洗后使用相同测试菜单测试颗粒,利用 KLATencor 公司 Surfscan SP1 型颗粒测试仪测量 8英寸硅外延片表面颗粒水平,改善前,> 0.20 um 颗粒数量典型值超过 20 个,改善后,> 0.20 um 颗粒数量典型值能控制在 10 个左右,颗粒去除比例明显提升(见图 1)。1.3 金属污染物金属沾污会增加硅功率器件的漏电流密度,影响器件的稳定性,破坏器件的性能。如铁会减少少数载流子的寿命,钠会在氧化层中引起移动电荷,铜会在硅 - 二氧化硅界面形成富铜的沉淀破坏薄氧化层的完整性。硅外延片表面的金属可能是来源于衬底和化学液的原生沾污、清洗设备带来的系统沾污或环境引入的外来沾污等。通常应用 SC2(或 HPM :HCl+H2O2+H2O)化学液来降低硅外延片表面的金属含量,但是 SC2 化学液结晶可能会增加洗后表面小直径颗粒的数量,可以用氢氟酸(HF)代替盐酸(HCl)或用 O3 配合 HF 替代 SC2化学液,也能很好地达到去金属的目的。一般晶圆加工厂家对 Na、Cu、Al、Fe 等主要金属,要求用电感耦合等离子体质谱仪(ICP-MS,Inductively Coupled Plasma Mass Spectrometry)测得的含量最高不能大于 5×1010Atms/cm2。为了满足对金属含量更低的要求,可以使用更高等级的化学液,监控 SC2 化学液浓度并进行及时补液,增加 SC2 化学液浓度,定期清理 SC2 化学液槽,系统阀门和管路进行周期维护。采取这些降低金属含量水平的手段后,硅外延片经过清洗后,利用 Agilent 公司7900 ICP-MS 测试仪测量外延片表面主要元素含量可以持续稳定在不高于 1×1010 Atms/cm2 或者更低水平,利用 SEMILAB 公司 FAaST 210 型 SPV 测试仪测量外延片 Fe 离子平均浓度在 1010 cm-3 量级(表 2 和图2)。1.4 表面水痕水痕是因为干燥不充分,硅外延片表面的水形成水滴,与硅在水中氧化形成的二氧化硅(SiO2)进行反应,形成稳定的偏硅酸(H2SiO3):2H2O+Si -> SiO2+4H+Si+O2 -> SiO2SiO2+H2O -> H2SiO3这些偏硅酸在清洗后的硅外延片表面表现为颗粒状水痕。由于水痕会影响刻蚀的完整性,引起区域性芯片失效,造成最终良率损失。经过湿法清洗后的硅外延片,通常采用以下两种技术进行干燥 :表面张力干燥技术(Marangoni dry method)和旋转干燥技术(Rotagoni dry method),配合异丙醇蒸汽(IPA vapor)或红外干燥(IR dry),加强对硅外延片表面的干燥。由这两种技术可以组合出多种硅外延片的干燥方法,比如 :在硅外延片从去离子水槽中进行慢提拉过程中,利用异丙醇与去离子水之间表面张力的不同(异丙醇表面张力小于去离子水),将异丙醇蒸汽吹向外延片表面,使得硅外延片表面的异丙醇浓度高于去离子水内的异丙醇浓度,较小的异丙醇表面张力将水从硅外延片表面移除 ;利用硅外延片在高速旋转时产生的离心力移除表面去离子水的同时,向硅外延片表面喷射异丙醇蒸汽,同样是利用异丙醇与去离子水之间表面张力的差异,加强干燥效果 ;将硅外延片从去离子水槽中进行慢提拉后,对硅外延片进行红外辐射,达到完全干燥的目的。2 清洗技术进展随着微电子产业技术的进步,硅外延片的直径越来越大,器件的结构和线宽越来越小,不仅仅对硅外延片的厚度和电阻率的均匀性要求越来越高,对硅外延片的表面状态特别是清洁程度的要求也越来越严苛。由美国无线公司开发的浸泡式 RCA 化学清洗工艺得到广泛应用,但是无法在一道清洗工序中同时实现对硅外延片表面的有机物、颗粒、金属污染物和粒状水痕高质量的去除。另外,工艺中会用到大量纯水,化学液本身会对硅外延片表面带来微粗糙度的影响,化学液的排放还会对环境造成不可逆的破坏和污染。为了减少传统清洗工艺对环境的影响,新型清洗技术的开发成为必然趋势。日本东北大学Ohmi 教授利用超净水溶解 O3 的强氧化性,可以带来更为平坦的氧化膜,还可以去除 C-H 键结合的有机物和金属。利用H2O2 的氧化作用和 HF 清洗液的强活性,可以使硅外延片表面氧化层上附着的金属同氧化层一同被溶解去除。将O3 和 HF 清洗液配合用到 RCA 标准清洗工艺中,可以减小对表面微粗糙度的影响,并提升清洗效果,配合单片清洗机的使用,还可以有效减少纯水和化学液的使用量。3 结语功率半导体器件用硅外延片清洗质量的高低,固然与清洗机的设计理念和部件配置有直接关系,但是设备因素只是人、机、料、法、环影响要素中的一个。RCA标准清洗工艺经过 30 余年的发展,已经演变出很多种新的工艺,而且每台清洗机的工艺都不会完全一样,也不会一成不变。在实际清洗过程中,还需要对操作者、设备保养、化学液浓度、工艺流程和清洗环境等环节进行标准化管理,遇到相关清洗问题(如本文提到的表面有机物、颗粒、金属污染物和粒状水痕去除效果变差)比例增加的情况,能够及时发现和解决,才能保证清洗质量维持在比较高的水平,从而满足晶圆加工厂家的需求。
第一个电路是我素未谋面的朋友抄的电路,这个电路是在一个已经量产产品上的电路,所以说大家也是可以放心借鉴与参考(可以适当增加防护或缓起等)。做低功耗的应该会比较实用,因为断电就是0功耗(仅有一点点PMOS漏电),非常好用省电。
NMOS在实际应用中为何比PMOS要更受欢迎,本文将从导电沟道、电子迁移率和器件速度等多个方面来展开讲解。 首先是在性能方面考虑: 与NMOS管驱动能力相同的一个PMOS管,其器件面积可能是NMOS管的2~3倍,然而器件面积会影响导通电阻、输入/输出电容,而这些相关的参数容易导致电路的延迟。 同样,在相同的尺寸条件下,PMOS管沟道导通电阻比NMOS要大一些,这样开关导通损耗相应也会比NMOS管要大一些。 在沟道方面我们还可以进行再详解: NMOS的沟道是由 N 型半导体构成,而PMOS的沟道则是由P型半导体构成。由于N型半导体的电子浓度比P型半导体高,所以NMOS的电子迁移率比PMOS高,也就是说,在相同的电场下,NMOS中的电子速度比PMOS中的电子速度快。 在这里我们需要提到,由于有了迁移率的差别,才有速度与沟道导通电阻的差别,也正是如此,PMOS管的应用范围受到限制。 在工艺方面,PMOS管与NMOS管的制造差异并不大,随着工艺的不断进步,这种差异也已经越来越小。 那么,为什么NMOS的电子迁移率比PMOS高,NMOS中的电子速度比PMOS中的电子速度快? 我们简单先了解电子/空穴迁移率: 电子迁移率,指的是电子在电场力作用下运动快慢的物理量。 电子浓度相同的两种半导体材料,一般情况下,在两端施加相同的电压,迁移率更大的那个半导体材料,它里面的电子运动速度越快,单位时间通过的电子数会越多,也就是说,电流越大。 因此我们可以解释为,电子迁移率越高的半导体材料,其电阻率越低,在通过相同的电流时,其损耗会越小。 空穴迁移率与电子迁移率一样,空穴迁移率越高,损耗越小。 不过在一般情况下(上面也有提到),电子的迁移率是要比空穴要高的。 这是因为空穴是电子的空位,空穴的运动,本质上来讲,是电子从一个空穴移动到另外一个空穴。 这里就要回来讲NMOS和PMOS的导电沟道差异了。 MOS的载流子只有一种,电子或者空穴。在偏压下会形成反型层作为导电沟道,也就是载流子的迁移路径。 NMOS管在导通时形成的是N型导电沟道,也就是说用来导电的是电子。而PMOS管导通,形成的是P型导电沟道,用来导电的是空穴。简单笔记如下: 类别 沟道 载流子 NMOS N型 电子 PMOS P型 空穴 一般而言,电子迁移速率是空穴迁移速率的五到十倍,根据材料和结构以及其本身特性的不同,这个倍数甚至会更高。 因为电子比空穴的迁移率要高,所以同体积大小与同掺杂的情况下,NMOS管的损耗要比PMOS管小很多。 除了功耗之外,电子/空穴迁移率还影响着器件的速度。 NMOS管的截止频率(输入/输出 = 1时的频率) 从结果会得出,截止频率与电子迁移率成正比。 因此,电子迁移率越高,NMOS管可以在更高的频率的情况下工作。 当NMOS的Vgs电压高频率变化时,形成的导电沟道的厚薄也会跟着发生变化。 这个导电沟道的变化是通过电子的移动来形成的,电子移动速度越快(换言之电子迁移率越高),那么导电沟道就能更快地响应Vgs的变化,其中的缘由涉及到NMOS管的工作原理。 这就说明,电子迁移率越高,器件的工作频率越高。同样的,PMOS管也一样。 除了以上讲的几个方面外,选择NMOS管较多的还有其它因素,比如价格问题,市面上的PMOS一般会比NMOS的价格要高,这是因为市场经济方面多个因素构成的,在选择MOS管时,NMOS在综合考虑之后被选择的要多的多。 对于NMOS管在实际应用中更受欢迎的原因,最后做个简单总结: ①NMOS的沟道导通电阻要比PMOS小得多,其开关导通损耗较小; ②NMOS是N型沟道,载流子是电子;PMOS是P型沟道,载流子是空穴。电子迁移速率比空穴迁移速率要快,在损耗方面与开关速度方面NMOS更有优势; ③N型MOS管通过的电流能力相比PMOS会更大; ④市面上的价格等因素影响。
由骏龙科技公司最新推出的《多功能电化学模块》系列专辑由两篇文章构成,主要介绍了电化学模块的功能与原理,以及模块应用开发案例。本文《多功能电化学模块(上) — 模块功能与原理》为大家...
Photo-Diode 光电二极管,内部结构是由一个PN结组成的半导体器件。它和常用二极管一样,有单向导通的特性。 色彩测量、发射光谱仪、气体探测器、浑浊度计等应用通常都是采用光电二极管来实...
首先我们应该清楚一个概念:在高速板卡中,传输线不能仅仅看作是理想的导线,而是需要考虑各种寄生参数,比如寄生电容,寄生电感,寄生电阻等。这些参数综合起来称之为传输线的特性阻抗。图1 图1中等效阻抗: 那图1中的模型是怎么来的?或者说为什么传输线在高频时为什么需要做等效模型?图2(来源于网络)图2中的左边图所示,无论是什么样的信号线,最终都是需要回流到参考平面(GND),当然电源也是一样需要回流到GND。PCB在生产制作的过程中,是无法避免线路和参考平面之间存在寄生电容,寄生电感,寄生电阻。信号在传输线中传输的过程中,每一步都会遇到不同的寄生参数,所以常说的阻抗控制,就是需要控制整条传输线的寄生参数保持一致,这个就需要整条传输线每处都需要做到均匀,而这也可以称为阻抗连续,反之就称之为阻抗不连续。高速板卡中,信号在阻抗不连续的传输线上传输就有可能出现信号反射的情况!那什么是信号反射?有什么危害?在传输线中,当信号遇到阻抗不连续的节点时,就会出现信号发射的情况,这个阻抗不连续的节点也称为瞬态阻抗。如下图3所示,传输线由50Ω突变成70Ω时的情况,A和C都遇到阻抗突变点,会沿着输入路径反射回去(信号反射),而只有B顺利通过。图3信号的反射会直接造成信号的失真,信号的完整性,还会增加额外的噪音,干扰其他信号的正常运行,影响整机的稳定性。 图4所以在PCB走线时,为什么要保证同一个网络的线宽要一致,就是出于这方面的考虑! 在低频电路中,我们基本上都不会考虑阻抗匹配的问题,可以说是直接习惯性的忽略了,其根本原因是低频信号的波长相对于传输线来说实在太长了,根本不会产生发射问题(举个栗子:就像往大海里面倒入一杯水一样,起不了太大的涟漪) 比如说一个信号的频率f=1KHZ,根据波长的计算公式: λ=u/f其中: λ为波长,u为电磁波在真空中传输的速度,约等于光速3*10^8m/s可以计算出 λ=3*10^8m/s/1000HZ=300000m 300000m的波长远远大于传输线的长度。那其实由 λ=u/f可知,f越大,波长λ越短。当波长短到和传输线的长度相等时(或者大于波长的1/4),由于阻抗问题,就会出现源信号和发射信号叠加在一起的现象,最典型的波形表现就是“振铃”!所以在高速板卡的设计中,我们会经常听到“阻抗匹配”,这是非常关键的,也是高速板卡设计的重中之重。阻抗匹配具体就是指信号源的阻抗,传输线的阻抗,还有接收端的阻抗处于一种合适的状态!
1. 电池或电源问题 原因: 电池在低温环境下放电能力降低,内阻增大,可能导致设备供电不足。 电源管理电路无法正常启动或供电电压偏低。 我们设备采用锂电池,锂电池在低温时候放电能力急剧下降。锂电池的电解液负责锂离子的传导,在低温下,电解液的粘度会增加,甚至可能部分结晶化,导致锂离子的迁移率显著下降。这种传输能力的降低会直接影响电池的内阻增大,使得电池的放电能力减弱。 解决措施: 使用低温性能优异的电池(如锂亚硫酰氯电池或特殊锂离子电池)。 测试供电电路在低温环境下的输出是否稳定,必要时优化电源设计。 增加加热器或电池保温措施。 我们先定位问题,由于是室外移动设备。我们采取给怀疑的电源模块贴暖宝宝的方式,看能否改善,先锁定聚焦具体的问题点;同时在杭州实验室用高低温温箱同步实验,看电源模块是否有问题。 2. 电容器特性退化 原因: 常规电解电容器在低温下等效串联电阻(ESR)增加,导致滤波效果变差。 陶瓷电容的温度特性可能使电容值下降。 解决措施: 替换为宽温度范围(如 -55°C 至 +125°C)的低温专用电容器。 优化电源滤波电路以适应低温特性。 增强电容滤波特性,增加设计余量,考虑低温情况下,电容容值和ESR变化带来的影响,以及选择更大容值,或者更低ESR电容。 3. 振荡电路启动失败 原因: 晶体振荡器在低温下起振困难或频率漂移。 晶体参数与电路不匹配,导致低温下的振荡裕度不足。 解决措施: 使用宽温晶体振荡器或增加起振电路的裕度。 在低温环境下测量振荡信号,并调整匹配电容值。 4. 半导体器件性能下降 原因: 半导体器件的阈值电压随温度变化,低温下可能导致MOSFET或BJT无法正常导通。 放大器的偏置点可能偏移,导致工作点异常。 解决措施: 选择适合低温工作的半导体器件(标明工作温度范围)。 调整电路设计,确保器件在低温下的工作点正常。 这种情况是比较多大。 二极管的低温特性 特性变化: 正向压降增大: 二极管的正向压降(Vf)随温度降低而增加,每降低 1°C,典型值增大约2−2.5mV。 在低温下,正向压降过高可能导致电路无法正常导通。 反向漏电流减小: 低温会降低少子浓度,反向漏电流显著减小,有利于减小反向功耗。 针对这个特性来说,高温容易出问题。 开关速度变化: 开关速度可能受影响,尤其是高速肖特基二极管,因载流子存储效应变慢。 解决措施: 选择正向压降更低的器件(如低温特性更好的肖特基二极管或快速恢复二极管)。 增加电路的驱动裕量,确保二极管在低温下仍能导通。 验证开关频率与二极管的反向恢复时间匹配。 三极管(BJT)的低温特性 特性变化: 增益变化: 三极管的直流增益(hFE)在低温下减小,这是由于少子寿命缩短导致的。 低增益可能导致放大器性能下降,或开关电路驱动不足。 V_BE 电压升高: 基-射极电压(VBE)随温度降低而增加,约2mV/°C 如果驱动电压不足,可能导致器件无法完全导通。 饱和电压降低: VCE(sat)(饱和压降)通常会降低,有利于开关损耗减小。 解决措施: 调整偏置电阻值或选择宽温增益稳定的器件。 增加驱动电压裕量以应对VB增高问题。 对开关电路,测试是否在低温下仍能进入完全饱和状态。 MOSFET 的低温特性 特性变化: 阈值电压Vth增加: MOSFET 的开启阈值电压Vth随温度降低而增加,这可能导致低栅压驱动的电路无法导通。 导通电阻RDS(on)减小: 低温下载流子迁移率增加,使RDS(on)减小,导通损耗降低。 开关特性变化: 栅极电容的特性可能随温度改变,影响开关速度。 雪崩耐量提高: 在低温下,MOSFET 的雪崩电流能力(耐压能力)通常增强。 解决措施: 选择阈值电压较低的 MOSFET(如适合低温工作的逻辑级 MOSFET)。 测试栅极驱动能力是否足够,以确保 MOSFET 在低温下能完全开启。 针对高速开关电路,优化驱动电路的电容匹配。 5. 机械与连接问题 原因: 热膨胀/收缩效应导致机械连接松动或接触电阻增大。 PCB设计中,某些焊点在低温下产生微裂纹,导致接触不良。 解决措施: 检查和优化PCB工艺,确保焊点质量。 使用宽温范围的连接器或焊接材料。 6. 软件/固件启动逻辑问题 原因: 系统在低温下的时序或复位逻辑异常,可能是由时钟源或电源稳定性引起。 低温下 ADC 或其他关键传感器读取值异常,导致错误判断。 解决措施: 调整初始化逻辑,增加对关键时序的监控和恢复。 校准温度传感器,增加低温下的异常检测和容错机制。 7. 其他外部因素 原因: 冷凝水或霜冻短路电路。 低温导致材料变脆,可能引发机械损坏。 解决措施: 在低温环境下进行防潮设计,如涂覆防护漆。 对设备进行严格的低温机械性能测试。