第一个电路是我素未谋面的朋友抄的电路,这个电路是在一个已经量产产品上的电路,所以说大家也是可以放心借鉴与参考(可以适当增加防护或缓起等)。做低功耗的应该会比较实用,因为断电就是0功耗(仅有一点点PMOS漏电),非常好用省电。
1. 电池或电源问题 原因: 电池在低温环境下放电能力降低,内阻增大,可能导致设备供电不足。 电源管理电路无法正常启动或供电电压偏低。 我们设备采用锂电池,锂电池在低温时候放电能力急剧下降。锂电池的电解液负责锂离子的传导,在低温下,电解液的粘度会增加,甚至可能部分结晶化,导致锂离子的迁移率显著下降。这种传输能力的降低会直接影响电池的内阻增大,使得电池的放电能力减弱。 解决措施: 使用低温性能优异的电池(如锂亚硫酰氯电池或特殊锂离子电池)。 测试供电电路在低温环境下的输出是否稳定,必要时优化电源设计。 增加加热器或电池保温措施。 我们先定位问题,由于是室外移动设备。我们采取给怀疑的电源模块贴暖宝宝的方式,看能否改善,先锁定聚焦具体的问题点;同时在杭州实验室用高低温温箱同步实验,看电源模块是否有问题。 2. 电容器特性退化 原因: 常规电解电容器在低温下等效串联电阻(ESR)增加,导致滤波效果变差。 陶瓷电容的温度特性可能使电容值下降。 解决措施: 替换为宽温度范围(如 -55°C 至 +125°C)的低温专用电容器。 优化电源滤波电路以适应低温特性。 增强电容滤波特性,增加设计余量,考虑低温情况下,电容容值和ESR变化带来的影响,以及选择更大容值,或者更低ESR电容。 3. 振荡电路启动失败 原因: 晶体振荡器在低温下起振困难或频率漂移。 晶体参数与电路不匹配,导致低温下的振荡裕度不足。 解决措施: 使用宽温晶体振荡器或增加起振电路的裕度。 在低温环境下测量振荡信号,并调整匹配电容值。 4. 半导体器件性能下降 原因: 半导体器件的阈值电压随温度变化,低温下可能导致MOSFET或BJT无法正常导通。 放大器的偏置点可能偏移,导致工作点异常。 解决措施: 选择适合低温工作的半导体器件(标明工作温度范围)。 调整电路设计,确保器件在低温下的工作点正常。 这种情况是比较多大。 二极管的低温特性 特性变化: 正向压降增大: 二极管的正向压降(Vf)随温度降低而增加,每降低 1°C,典型值增大约2−2.5mV。 在低温下,正向压降过高可能导致电路无法正常导通。 反向漏电流减小: 低温会降低少子浓度,反向漏电流显著减小,有利于减小反向功耗。 针对这个特性来说,高温容易出问题。 开关速度变化: 开关速度可能受影响,尤其是高速肖特基二极管,因载流子存储效应变慢。 解决措施: 选择正向压降更低的器件(如低温特性更好的肖特基二极管或快速恢复二极管)。 增加电路的驱动裕量,确保二极管在低温下仍能导通。 验证开关频率与二极管的反向恢复时间匹配。 三极管(BJT)的低温特性 特性变化: 增益变化: 三极管的直流增益(hFE)在低温下减小,这是由于少子寿命缩短导致的。 低增益可能导致放大器性能下降,或开关电路驱动不足。 V_BE 电压升高: 基-射极电压(VBE)随温度降低而增加,约2mV/°C 如果驱动电压不足,可能导致器件无法完全导通。 饱和电压降低: VCE(sat)(饱和压降)通常会降低,有利于开关损耗减小。 解决措施: 调整偏置电阻值或选择宽温增益稳定的器件。 增加驱动电压裕量以应对VB增高问题。 对开关电路,测试是否在低温下仍能进入完全饱和状态。 MOSFET 的低温特性 特性变化: 阈值电压Vth增加: MOSFET 的开启阈值电压Vth随温度降低而增加,这可能导致低栅压驱动的电路无法导通。 导通电阻RDS(on)减小: 低温下载流子迁移率增加,使RDS(on)减小,导通损耗降低。 开关特性变化: 栅极电容的特性可能随温度改变,影响开关速度。 雪崩耐量提高: 在低温下,MOSFET 的雪崩电流能力(耐压能力)通常增强。 解决措施: 选择阈值电压较低的 MOSFET(如适合低温工作的逻辑级 MOSFET)。 测试栅极驱动能力是否足够,以确保 MOSFET 在低温下能完全开启。 针对高速开关电路,优化驱动电路的电容匹配。 5. 机械与连接问题 原因: 热膨胀/收缩效应导致机械连接松动或接触电阻增大。 PCB设计中,某些焊点在低温下产生微裂纹,导致接触不良。 解决措施: 检查和优化PCB工艺,确保焊点质量。 使用宽温范围的连接器或焊接材料。 6. 软件/固件启动逻辑问题 原因: 系统在低温下的时序或复位逻辑异常,可能是由时钟源或电源稳定性引起。 低温下 ADC 或其他关键传感器读取值异常,导致错误判断。 解决措施: 调整初始化逻辑,增加对关键时序的监控和恢复。 校准温度传感器,增加低温下的异常检测和容错机制。 7. 其他外部因素 原因: 冷凝水或霜冻短路电路。 低温导致材料变脆,可能引发机械损坏。 解决措施: 在低温环境下进行防潮设计,如涂覆防护漆。 对设备进行严格的低温机械性能测试。
01电容故障 电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。电容损坏表现为:容量变小、完全失去容量、漏电、短路。 电容在电路中所起的作用不同,引起的故障也各有特点:在工控电路板中,数字电路占绝大多数,电容多用做电源滤波,用做信号耦合和振荡电路的电容较少。用在开关电源中的电解电容如果损坏,则开关电源可能不起振,没有电压输出; 或者输出电压滤波不好,电路因电压不稳而发生逻辑混乱,表现为机器工作时好时坏或开不了机,如果电容并在数字电路的电源正负极之间,故障表现同上。 这在电脑主板上表现尤其明显,很多电脑用了几年就出现有时开不了机,有时又可以开机的现象,打开机箱,往往可以看见有电解电容鼓包的现象,如果将电容拆下来量一下容量,发现比实际值要低很多。 电容的寿命与环境温度直接有关,环境温度越高,电容寿命越短。这个规律不但适用电解电容,也适用其它电容。所以在寻找故障电容时应重点检查和热源靠得比较近的电容,如散热片旁及大功率元器件旁的电容,离其越近,损坏的可能性就越大。所以在检修查找时应有所侧重。 有些电容漏电比较严重,用手指触摸时甚至会烫手,这种电容必须更换。在检修时好时坏的故障时,排除了接触不良的可能性以外,一般大部分就是电容损坏引起的故障了。所以在碰到此类故障时,可以将电容重点检查一下,换掉电容后往往令人惊喜。 02电阻故障 常看见许多初学者在检修电路时在电阻上折腾,又是拆又是焊的,其实修得多了,你只要了解了电阻的损坏特点,就不必大费周章。电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。前两种电阻应用最广,其损坏的特点一是低阻值 (100Ω以下) 和高阻值 (100kΩ以上) 的损坏率较高,中间阻值 (如几百欧到几十千欧) 的极少损坏;二是低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。 线绕电阻一般用作大电流限流,阻值不大;圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹;水泥电阻是线绕电阻的一种,烧坏时可能会断裂,否则也没有可见痕迹;保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。根据以上列出的特点,我们先可以观察一下电路板上低阻值电阻有没有烧黑的痕迹,再根据电阻损坏时绝大多数开路或阻值变大以及高阻值电阻容易损坏的特点,我们就可以用万用表在电路板上先直接量高阻值的电阻两端的阻值。 如果量得阻值比标称阻值大,则这个电阻肯定损坏 (要注意等阻值显示稳定后才下结论,因为电路中有可能并联电容元件,有一个充放电过程) ,如果量得阻值比标称阻值小,则一般不用理会它。这样在电路板上每一个电阻都量一遍,即使“错杀”一千,也不会放过一个了。 03运算放大器故障 运算放大器好坏的判别对相当多的电子维修者有一定的难度,不只文化程度的关系,在此与大家共同探讨一下,希望对大家有所帮助。理想运算放大器具有“虚短”和“虚断”的特性,这两个特性对分析线性运用的运放电路十分有用。为了保证线性运用,运放必须在闭环(负反馈)下工作。如果没有负反馈,开环放大下的运放成为一个比较器。如果要判断器件的好坏,先应分清楚器件在电路中是做放大器用还是做比较器用。根据放大器虚短的原理,就是说如果这个运算放大器工作正常的话,其同向输入端和反向输入端电压必然相等,即使有差别也是mv级的,当然在某些高输入阻抗电路中,万用表的内阻会对电压测试有点影响,但一般也不会超过0.2V,如果有0.5V以上的差别,则放大器必坏无疑。如果器件是做比较器用,则允许同向输入端和反向输入端不等。同向电压>反向电压,则输出电压接近正的最大值;同向电压<反向电压,则输出电压接近0V或负的最大值(视乎双电源或单电源)。如果检测到电压不符合这个规则,则器件必坏无疑!这样你不必使用代换法,不必拆下电路板上的芯片就可以判断运算放大器的好坏了。 04SMT元件故障 有些贴片元件非常细小,用普通万用表表笔测试检修时很不方便,一是容易造成短路,二是对涂有绝缘涂层的电路板不便接触到元件管脚的金属部分。这里告诉大家一个简便方法,会给检测带来不少方便。取两枚最小号的缝衣针,将之与万用表笔靠紧,然后取一根多股电缆里的细铜线,用细铜线将表笔和缝衣针绑在一起,再用焊锡焊牢。这样用带有细小针尖的表笔去测那些SMT元件的时候就再无短路之虞,而且针尖可以刺破绝缘涂层,直捣关键部位,再也不必费神去刮那些膜膜了。 05公共电源短路故障 电路板维修中,如果碰到公共电源短路的故障往往头大,因为很多器件都共用同一电源,每一个用此电源的器件都有短路的嫌疑。如果板上元件不多,采用“锄大地”的方式终归可以找到短路点;如果元件太多,“锄大地”能不能锄到状况就要靠运气了。在此推荐一比较管用的方法,采用此法,事半功倍,往往能很快找到故障点。要有一个电压电流皆可调的电源,电压0-30V,电流0-3A,这种电源不贵,大概300元左右。将开路电压调到器件电源电压水平,先将电流调至最小,将此电压加在电路的电源电压点如74系列芯片的5V和0V端,视乎短路程度,慢慢将电流增大。用手摸器件,当摸到某个器件发热明显,这个往往就是损坏的元件,可将之取下进一步测量确认。当然操作时电压一定不能超过器件的工作电压,并且不能接反,否则会烧坏其它好的器件。 06板卡故障 工业控制用到的板卡越来越多,很多板卡采用金手指插入插槽的方式。由于工业现场环境恶劣,多尘、潮湿、多腐蚀气体的环境易使板卡产生接触不良故障,很多朋友可能通过更换板卡的方式解决了问题,但购买板卡的费用非常可观,尤其某些进口设备的板卡。其实大家不妨使用橡皮擦在金手指上反复擦几下,将金手指上的污物清理干净后,再试机,没准就解决了问题,方法简单又实用。 07电气故障 各种时好时坏电气故障从概率大小来讲大概包括以下几种情况: 接触不良:板卡与插槽接触不良、缆线内部折断时通时不通、线插头及接线端子接触不好、元器件虚焊等皆属此类; 信号受干扰:对数字电路而言,在特定的情况条件下故障才会呈现,有可能确实是干扰太大影响了控制系统使其出错,也有电路板个别元件参数或整体表现参数出现了变化,使抗干扰能力趋向临界点从而出现故障; 元器件热稳定性不好:从大量的维修实践来看,其中首推电解电容的热稳定性不好,其次是其它电容、三极管、二极管、IC、电阻等; 电路板上有湿气、尘土等:湿气和积尘会导电具有电阻效应,而且在热胀冷缩的过程中阻值还会变化,这个电阻值会同其它元件有并联效果,这个效果比较强时就会改变电路参数使故障发生; 软件也是考虑因素之一:电路中许多参数使用软件来调整,某些参数的裕量调得太低处于临界范围,当机器运行工况符合软件判定故障的理由时,那么报警就会出现。
前段时间有兄弟在群里讨论光耦。光耦在电子设备中,真的还算用的比较多的,网上介绍也有很多,今天主要讨论光耦的两个话题。 1、下图的电阻R2有什么用?我们之前在拆解其它产品的时候发现有的光耦输入端会并联一个电阻R2,而有的产品则没有此电阻。 2、光耦最重要的参数CTR。 为了照顾一些基础不太好的同学,我们先来看看光耦的一些基础知识。 光耦又称光电耦合器,它相当于带隔离功能的三极管,其原理也可以参考三极管的特性。所以我们一般在需要考虑隔离作用的场景下会选用光耦,同时由于光耦输入输出可用于两种不同的电压供电,所以也常常用来实现电路的电平转换。 再看此图,输入端电压VCC1供电,加到发光二极管和电阻R1上产生光耦的输入电流 if,然后使副边的光敏三极管导通,从而改变输出信号,达到传递信号的目地。 基本原理分析 输入端GPIO为单片机的IO口,用来控制发光二极管的通断,进而控制输出信号。 当GPIO为高时,光耦不导通,输出output为高 当GPIO为低时,光耦导通,输出output为低。 1、光耦输入端并一个电阻有什么用? 大家可以看到这个电阻是并联在光耦输入端的二极管上,我们测量发现这个电阻有的是1K,有的是2.7K,反正阻值都不是很大。通过分析,有一种说法可能更合理一些,那就是防止光耦误动作,导致错误信号的传递。怎么来理解呢?光耦的原理就是通过输入端的发光二极管导通后形成的微弱电流,传递给次级的。大家可能都有这样的经验,在没有接地的电烙铁焊LED灯时,灯会亮。所以发光二极管的灵敏度很高,一般几个mA的电流足以点亮。 在光耦的输入端,也有寄生电容的存在,这个电容可能会影响光耦信号的正常传递。因为电容内存储有电荷,如果此时并联一个电阻,就会将电荷迅速泄放,就达不到二极管两端的开启电压,从而可以正常通断。所以这颗电阻有些产品有,有些产品没有,因为没有也能正常工作,只是有了的话,产品会更可靠一点。那么这个电阻的阻值该怎么取呢?阻值太大,起不到放电作用,阻值太小,也会影响光耦的开关。既然是为了放电,那肯定阻值越小越好,最小能到多少呢?说到这里不得不说光耦最重要的参数CTR。 2、怎么理解CTR? CTR是英文current transfer ratio的缩写,译为电流传输比。 用公式表示:CTR= ic/if X 100%。其中ic表示输出电流,if表示输入。为了方便计算电阻R2的取值,我们以PC817为例,并给电路的输入、输出电压及电阻赋值。令VCC1=3.3V,VCC2=12V,R1=330R,R2=4.7K,求电阻R2的最小值? 打开datasheet,有几个参数需要重点关注一下,一会用得着:1、VF光耦输入二极管的导通压降,我们取最大值1.4V; 2、CTR,它是一个范围:50%~600%。也就是放大倍数在0.5~6倍。我们计算的时候,按照最低的50%使用。 3、Vce,副边三极管导通后的压降,我们取最大值0.2V。 为了方便观看,我把电路图复制到下方来。我们先来计算副边电流IC: IC=(VCC2-Vce)/R3=(12-0.2)/4.7=2.51mA 根据CTR= ic/if X 100%,得: if= ic/CTR X 100% =2.51/0.5=5.02mA 再计算R1的电流 IR1=(VCC1-VF)/R1=(3.3-1.4)/330=5.76mA 所以R2阻值为 R2=UR2/IR2=1.4/(5.76-5.02)=1.89K 所以这个电阻R2的阻值一定要>1.89K,可以取2K。 以上数值王工大概给取的,不一定合理,主要是想让大家更直观的理解是怎么计算的。 有一点要注意的是,光耦对温度很敏感,温度一升起来,性能就会降低,这是大多数半导体都有的共性。 光耦其实还有一些参数没有讲,篇幅有限,今天就到这里了,大家有什么想法都可以在评论区留言。 写在最后 都说硬件工程师越老越吃香,这句话也证明硬件也是需要积累的,王工从事硬件多年,也会不定期分享技术好文,感兴趣的同学可以加微信,或后台回复“加群”,管理员拉你加入同行技术交流群。
本文介绍了硬件工程师入门的基础元器件,包括二极管、三极管、MOS管和IGBT。对比了肖特基二极管与硅二极管的特性,探讨了三极管作为开关的应用和电阻选择方法,解释了MOS管的结构和栅极串联电阻布局,并概述了IGBT在电力转换中的重要角色及其发展。 硬件工程师入门基础知识 (一)基础元器件认识(二) tips:学习资料和数据来自《硬件工程师炼成之路》、百度百科、网上资料。 1.二极管 2.三极管 3.MOS管 4.IGBT 5.晶振 1.二极管 肖特基二极管和硅二极管的比较: 肖特基二极管的优势主要在速度和压降,对这两个没要求的场景,那自然选择更便宜的由硅构成的二极管。 二极管漏电流 这个参数,值得一提的是,肖特基二极管的漏电流,是硅二极管的 100 倍左右。 还有一点就是,漏电流与温度有很大的关系。温度越高,漏电流越大。 硅二极管温度越高,漏电流越大,是原因硅二极管的漏电流是由少子决定的,温度越高,本征激发越强烈,少子浓度会升高,所以漏电流就越大了。 反向恢复时间:也是比较重要的参数,这个前面有文章专门讲过,就不再说了。 工作频率:由反向恢复时间决定的。 耐压:记住肖特基二极管耐压值,很难做高就行吧,一般不超过 100V,当然,更高的也有,这里只说常见的。而硅二极管可以做很高。 反向恢复时间 实际应用中的二极管,在电压突然反向时,二极管电流并不是很快减小到 0,而是会有比较大的反向电流存在,这个反向电流降低到最大值的 0.1 倍所需的时间,就是反向恢复时间。 几种二极管的最高工作频率顺序是下面这样的: 为什么要用肖特基二极管续流? 我们来看一个问题: 为什么开关电源中,一般用肖特基二极管续流,不用快恢复二极管呢? 主要有两点: 一是肖特基二极管导通电压更低。 二是肖特基二极管速度更快,反向恢复时间更小。 如此一来,使用肖特基二极管肯定损耗是更小的,温度更低,也不会烫成狗,这样整个开关电源效率也更高。 2.三极管 常用的三极管电路设计-电阻到底是怎么选的我们在模电教材里面,会有各种放大电路,共基,共集,共射等,相关的计算公式,曲线,电路等效 模型天花乱坠,学起来非常费劲。实际 90%工作,可能我们主要关注一个参数就行了,那就是电流放大倍数 β,其它的通通用不到,而且我们做产品,如果真要放大信号,那也是使用各种集成运放。 绝大多数情况,我们是把三极管当作一个低成本的开关来使用的,作为开关,虽然 MOS 可能更为合适,不过三极管价格更低,在小电流场景,三极管反而是用得更多的。 一个 NPN 三极管,价格也就 2 分钱左右。常用的电路(NPN 为例) 1、电平转换,反相 这个电路用得非常多,有两个功能。 一是信号反相,就是输入高电平,输出就是低电平;输入低电平,输出就是高电平 二是改变输出信号的电压,比如输入的电压范围是 0V 或者是 3.3V,想要得到一个输出是 0V 或者是5V 的电平怎么办呢?让 Vcc 接 5V 就可以了,输出高的时候,out 的电平就是大约为 5V 的。2、驱动指示灯 我们经常使用三极管驱动 LED 灯,比如下面这个电路: 3、驱动 MOS 开关 还一个电路也用得非常多,那就是驱动电源的 PMOS 开关,如下图: 在 in 为低时,三极管不导通,相当于是开路,PMOS 管的 Vgs 为 0,PMOS 管也不导通,Vcc2 没有电。 在 in 为高时,三极管导通,集电极相当于是接地 GND,于是 PMOS 管的 Vgs 为-Vcc1,PMOS 管导通,也就是 Vcc1 与 Vcc2 之间导通,Vcc2 有电。如何选择电阻 我们的电路输入一般是只有两种状态,0V 或者是其它的高电平(1.8V,3.3V,5V 等),截止状态一般不用怎么考虑,因为如果让三极管的 Vbe=0,自然就截止了,重要的是饱和状态如何保证。 那么啥叫饱和状态? 我们先假定三极管工作在放大状态,那么放大倍数就是β,如果基极有 Ib 电流流过,那么集电极 Ic=β*Ib,Ic 也会在 Rc 上面产生压降 Urc。易得:Urc+Uce=Vcc,显然,Ib 越大,那么 Urc=βIbRc 越大,如果 Ib 足够大,那么 Urc=Vcc 时, Uce=Vcc-Urc≈0。电路计算举例 LED 灯的例子 已知条件:输入控制电压高电平为 3.3V,电源电压为 5V,灯的导通电流 10mA,灯导通电压 2V,三极管选用型号 MMBT3904 三极管饱和导通时,Vce=0V,所以 Rc=(5V-2V)/10mA=300Ω。 查询芯片手册,三极管 MMBT3904 的的放大倍数 β(hfe)如下图所示: 可以看到,在 Ic=10mA 时,放大倍数最小为 100。 那么 Ib=10mA/100=100uA,三极管导通时,Vbe 约为 0.7V,继而求得 Rb=(3.3- 0.7V)/100uA=26K。 也就是说只要 Rb<26K,三极管就工作在了饱和状态,像这种情况,我一般取 Rb=2.2K,或者是 1K,4.7K,10K,这样 Ib 更大,更能让三极管工作在饱和状态。 具体取多少,取决于整个板子的电阻使用情况,比如 10K 电阻用得多,那我就取 10K,这样物料种类少,生产更方便。 或者咱为了保险一点,比如要兼容别的三极管型号,可以取 Rb=1K,这样即使别的三极管 β 小于100,也能工作在饱和状态。 一般来说,我们不要取正好的值,比如 26K 或者接近 26K 的值,这样太不安全。 我们也可以反向验算下,假如 Rc=300Ω,Rb=10K,那么 Ib=(3.3-0.7)/10K=0.26mA,那么Ic=1000.26mA=26mA,那么 Rc 的压降是300Ω26mA=7.8V,这已经超过 Vcc 了,所以管子肯定是工作在饱和状态的。3.MOS管1、MOS 导通后电流方向其实可以双向流动,可以从 d 到 s,也可以从 s 到 d。 2、MOS 管体二极管的持续电流可以根据 MOS 管的功耗限制来计算, 3、MOS 管体二极管瞬间可以通过的电流,等于 NMOS 管导通后瞬间可以通过的电流,一般不会是瓶颈 NMOS 管的结构 我们看一下 NMOS 管的结构。 以 NMOS 为例,如上图,S 和 D 都是掺杂浓度比较高的 N 型半导体,衬底为 P 型半导体,并且衬底和 S 极是接到一起的。 在 Vgs 电压大于门限电压 Vth 时,也就是栅极相对衬底带正电,它会将 P 型衬底中的少子(电子)吸引到 P 型衬底上面,形成反型层,也就是导电沟道。PCB Layout 时,MOS 管栅极串联电阻放哪儿? 如上图,串联的电阻 R1 到底是放在靠近 IC 端,还是靠近 MOS 端?(注意,图中的 L1 是走线寄生电感,并不是这里放了个电感器件)1、 TI 的无刷电机驱动芯片 DRV8300 的 demo 板 Demo 板硬件设计可以直接在 Ti 官网下载,如下图,可以看到,串联电阻是放置在 MOS 管端的。 2、 Ti 的 POE 方案 TPS23753A 的 Demo 板 原理图如下: PCB 如下图,串联电阻也是放置在靠近 MOS 管端。 3、 MPS 的无刷电机驱动芯片 MP6535。 如下图,6 个 MOS 的栅极串联电阻 R18,R19,R20,R21,R22,R23 放置在中间。 从走线长度看,Q1,Q2,Q3 串联的电阻离 MOS 较近,离驱动 IC 较远。Q4,Q5,Q6 串联的电阻在 MOS 和驱动 IC 中间。 大部分情况栅极串联电阻靠近 MOS 管放置这个说法是属实的。4.IGBTIGBT(Insulated Gate Bipolar Transistor),绝缘栅双极型晶体管,是由(Bipolar Junction Transistor,BJT)双极型三极管和绝缘栅型场效应管(Metal Oxide Semiconductor,MOS)组成的复合全控型电压驱动式功率半导体器件, 兼有(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)金氧半场效晶体管的高输入阻抗和电力晶体管(Giant Transistor,GTR)的低导通压降两方面的优点。GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低。非常适合应用于直流电压为600V及以上的变流系统如交流电机、变频器、开关电源、照明电路、牵引传动等领域。IGBT是能源变换与传输的核心器件,俗称电力电子装置的“CPU”,作为国家战略性新兴产业,在轨道交通、智能电网、航空航天、电动汽车与新能源装备等领域应用极广。IGBT模块是由IGBT(绝缘栅双极型晶体管芯片)与FWD(续流二极管芯片)通过特定的电路桥接封装而成的模块化半导体产品;封装后的IGBT模块直接应用于变频器、UPS不间断电源等设备上。IGBT模块具有节能、安装维修方便、散热稳定等特点;当前市场上销售的多为此类模块化产品,一般所说的IGBT也指IGBT模块;随着节能环保等理念的推进,此类产品在市场上将越来越多见;IGBT功率模块采用IC驱动,各种驱动保护电路,高性能IGBT芯片,新型封装技术,从复合功率模块PIM发展到智能功率模块IPM、电力电子积木PEBB、电力模块IPEM。PIM向高压大电流发展,其产品水平为1200—1800A/1800—3300V,IPM除用于变频调速外,600A/2000V的IPM已用于电力机车VVVF逆变器。平面低电感封装技术是大电流IGBT模块为有源器件的PEBB,用于舰艇上的导弹发射装置。IPEM采用共烧瓷片多芯片模块技术组装PEBB,大大降低电路接线电感,进步系统效率,现已开发成功第二代IPEM,其中所有的无源元件以埋层方式掩埋在衬底中。智能化、模块化成为IGBT发展热门。IGBT如有讨论尽管留言,目前在新能源领域接触最多的还是IGBT模块。5.晶振晶振分类 首先,晶振一般分为两种,一种叫有源晶振,一种叫无源晶振。有源晶振也叫晶体振荡器,Oscillator;无源晶振有时也叫无源晶体,Crystal,晶体谐振器。至于哪个名字更专业,更准确,我觉得无需争论,名字只是代号而已,大家工作中沟通能知道说的是什么就行。简单说有源晶振自己供上电就能输出振荡信号,无源晶体必须额外增加电路才能振荡起来。 以上分类是从使用上面来说的。如果我们单看晶振的内部构造,就会发现,有源晶振内部是包含了一个无源晶振,然后再将阻容,放大等电路也包含进去,整体封装好再给我们用。晶振的等效模型 那么其中 Lm,Rm,Cm 分别又是什么意思呢? Cm:动态电容,反映了振动体的弹性,随频率会变化 Lm:动态电感,反映了振动体的质量,随频率会变化 Rm:动态电阻,反映了振动体的损耗,随频率会变化 C0:静电容,两个电极间形成的电容。晶振是如何起振的?皮尔斯晶体振荡器 目前工作中用得最多的就是皮尔斯晶体振荡器,也就是下面这个结构。 CL1,CL2 为匹配电容,Rext 通常为串联的几百欧姆电阻(有时也不加)。有时候数据手册会有推荐参数。上面这个结构可能看着不是很熟悉,我们把它转换一下,变成下面这个就熟悉些。 Inv:内部反相放大器。 Q:石英或陶瓷晶振。 RF:内部反馈电阻。 RExt:外部限流电阻,限制反相器输出电流。 CL1 和 CL2:两个外部负载电容。 Cs:寄生电容:PCB 布线,OSC_IN 和 OSC_OUT 管脚之间的效杂散电容反馈电阻 RF 在几乎所有的 ST 的 MCU 中,RF 是内嵌在芯片内的。它的作用是让反相器作为一个放大器来工作。Vin 和 Vout 之间增加的反馈电阻使放大器在 Vout = Vin 时产生偏置,迫使反向器工作在线性区域(图 5 中阴影区)。该放大器放大了晶振的正常工作区域内(Fs 与 Fa 之间)的噪声(例如晶振的热噪声),该噪声从而引发晶振起振。在某些情况下,起振后去掉反馈电阻 RF,振荡器仍可以继续正常工作。
一、基本概念与原理 三极管最主要的功能是电流放大(模拟电路)和开关作用(数字电路),常用的三极管有:S9014、S8550等型号。 三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。 三极管最基本的作用是放大作用,它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。关注公众号硬件笔记本 三极管有一个重要参数就是电流放大系数β。当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是基极电流β倍的电流,即集电极电流。集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。 二、三极管放大电路设计与应用 在电路设计当中,应用最多的当属三极管,它常常把微弱小信号经过放大来驱动蜂鸣器、LED、继电器等需要较大电流的器件。关注公众号硬件笔记本 三、三极管开关电路设计与应用 晶体管作为开关使用时,要用PNP型来控制接Vcc的引线(作为下管),用NPN型的晶体管来控制接地的引线(作为上管);(P/N-MOS管也是同样道理) 下面详细介绍10种三极管开关驱动电路图 (1) NPN/PNP三极管反相器电路:Vin无输入电位,Q1截止;Vin高电平时Q1导通,Q2基极得高电位,Q2截止。关注公众号硬件笔记本 (2)两只NPN三极管反相器电路:Vin无输入电位Q1截止,Q2导通;Vin接入高电平Q1导通,促使Q2基极电位下级,Q2截止。 (3)PNP三极管开关电路:当输入端悬空时Q1截止。VIN输入端接入低电平时,Q1导通,继电器吸合。 (4)PNP三极管开关电路:当Vin无输入电位时Q1截止;Vin接入高电平Q1导通,继电器吸合。 (5)三极管下拉电阻:当有高电位输入时Q导通,因E-C导通,又因有负载电阻,所以输出看作是低电平。关注公众号硬件笔记本 (6)三极管上拉电阻:当有高电位输入时Q导通,因E-C导通,又因有负载电阻,所以输出看作是高电平。 (7)光藕控制NPN三极管-1 (8)光藕控制NPN三极管-2 (9)光藕控制PNP三极管-1 (10)光藕控制PNP三极管-2