这是前几天一位学员私底下问我的一个问题:阻抗不就是电阻吗?为什么不能直接叫电阻?答案:不是。 首先我们需要先理清一个概念:那就是如果电路中通的是直流电,那可以把阻抗等效于电阻,但是如果电路中通的是交流电,那阻抗就不单单是电阻了,还有感抗和容抗(两者也称为电抗)。也就是说,电阻(R)其实就是阻抗的一个“子集”,阻抗(Z)是电阻(R)和感抗(XL)以及容抗(CL)的总和,公式表示为: Z=R+jX(其中X为电抗)在电路中,即使是PCB的走线,面对交流电(或者高频信号)寄生的电感和电容都会直接影响到信号,也就不是单纯的电阻了,包括很多电子器件,都会存在寄生电容和寄生电感。 电容的两个极板之间是绝缘的,也就是两个极板之间是不短路的,那么任何两个不短路的导体都能等效于电容,虽然很小很小。比如电感,本身的铜丝就存在寄生电阻(ESR),虽然很小,同理也存在等效电容的。可以这么说:阻抗无处不在!对于电感来说,面对交流电,它有一个特性:总是阻止电流的变化,当电流变大时它就阻止电流变大,当电流变小时就阻止电流变小。这是由于电感的“自感”效应引起的。根据法拉第的电磁感应定律可以得知这一个现象。对于电容来说,面对交流电,它有一个特性:总是阻止两端电压的变化,当两端电压变大时它就阻止电压变大,当两端电压变小时它就阻止电压变小。面对交流电,电感,电容的电压和电流都出现了“错位”的现象,也就是电压和电流之间存在了“相位差”。 总结:电阻阻碍电荷流过导体,从而产生热量,并且这个热量只能白白浪费掉。而电抗(感抗/容抗)阻碍电荷流过导体时会以其他的形式交换能量,而不是消耗能量。感抗的大小从公式中可以看得出:频率越大,感抗越大!XL=2πfL容抗的大小从公式中可以看得出:频率越大,容抗越小!XC=1/(2πfC)
最近看到一个关于上下拉电阻的问题,发现不少人认为上下拉电阻能够增强驱动能力。随后跟几个朋友讨论了一下,大家一致认为不存在上下拉电阻增强驱动能力这回事,因为除了OC输出这类特殊结构外,上下拉电阻就是负载,只会减弱驱动力。 但很多经验肯定不是空穴来风,秉承工程师的钻研精神,我就试着找找这种说法的来源,问题本身很简单,思考的过程比较有趣。 二极管逻辑 今天已经很难看到二极管逻辑电路了,其实用性也不算高,不过因为电路简单,非常适合用来理解基本概念。 一个最简单的二极管与门如下图。与门实现逻辑与操作Y=A&B,即A或者B任意为L的时候,输出Y为L,只有当A和B都为H时,Y才为H。 上图,基本二极管与门。 假设二极管无导通压降,在这个电路中,二极管充当了单向开关的角色,当A和B等于VDD时,两根二极管反向截至,Y被电阻上拉到VDD,这是Y就是H;当A或者B任意一端为GND时,二极管导通,因为二极管导通时电阻很小,远小于上拉电阻,所以Y被拉到了GND,即逻辑L。 至于二极管或门,只要把二极管转一下,再把电阻从拉到VDD改成拉到GND就可以了,非常简单。 上图,基本二极管或门。 基本原理 你看,在这么原始的逻辑电路中就已经出现了上下拉电阻,这里面的原理也非常简单粗暴:利用开关的闭合(电阻为0)和开启(电阻无穷大)的特性,配合电阻,就可以轻松实现两种电压的输出。这种电路还有一个变形,就是用恒流源取代电阻,一方面集成电路工艺,恒流源比电阻更容易获得,另一方面恒流源的驱动能力也更好。根据开关和电阻(或恒流源)的相对位置,有以下基本电路:即开关接到GND(L)或开关接到VDD(H)。 上图,几种开关电路接法。 这几种电路都是由开关的闭合或开启决定了VOUT是VDD还是GND。开关的相对位置不同,还决定了电路在某一状态下的驱动能力:开关的导通电阻为0,可视为驱动力无穷大,可是电阻(或恒流源)的驱动能力呢,只有VDD/R(或者恒流I),这就导致了电路在输出H或L的时候驱动能力不对称(换一个说法,就是电路在输出H或者L的时候,输出阻抗不一样)。 除了驱动能力的问题,这种单开关加电阻的模式还会带来静态功耗的问题,因为只要开关闭合,不管外部有没有负载,都会消耗电流。 既然开关的驱动力比电阻强,那么能不能把电阻也换成开关?恭喜你,发现了现代CMOS逻辑电路的基本单元:俩互补的开关。这样不管输出H还是输出L,驱动能力都是无穷大!好的,这时候上下拉电阻就不见了。 这样两个开关的电路还多出来了一种状态:当两个开关都开启时,VOUT即不是VDD也不是GND,而是一个悬空的状态(即高阻态,Hi-Z),这时候外部给什么信号它就是什么状态。这样又出现了一个新的逻辑门大类:三态逻辑门。 上图,互补开关电路。 上下拉电阻增强驱动能力? 很多经验不是空穴来风,只是在流传的过程中丢失了重要的前提条件。上一节也看到了有一些逻辑器件,他们输出高和输出低时的驱动能力差别很大。 TTL(70xx、74Fxx、74Sxx、74LSxx等)家族的器件就属于这种类型,如下图是7404(TTL反相器)的原理图,由于非对称的输出级设计,输出为高时驱动能力只有0.4mA,而输出低时居然能输出16mA的电流(手册中的输出电流不是晶体管或者电路本身的极限,而是超过这个电流以后,输出的电压可能无法满足逻辑族的要求)。 上图,7404的简化电路。 这个时候在输出端口外加一个上拉电阻,就可等效以增强端口在输出H时的驱动能力,但代价是端口输出L时,驱动能力相应地减弱,不过这时候芯片输出能力足够强,用这点代价来换取另一个状态下驱动能力的增强,还是划算。 上图,带上拉电阻的7404。 下表是仿真有无上拉电阻时,负载电流与输出电压的关系,可以看到上拉电阻确实增强了在一定负载下的输出电压,不过当负载电流较大时效果并不明显,而且边际效应也很显著,当上拉电阻减小到一定程度以后,增强效果也不太显著,而且会大大增加静态功耗。 上表,带不同上拉电阻的7404输出电压与负载电流的关系。 既然非对称的输出级有这样的问题,那为啥不能把这个驱动器设计成上下对称的呢? 一方面,如果要设计成上下对称的结构,上管需要用P管,而当时的工艺限制,P管各方面性能都不如N管,速度、功耗和成本都不是很划算,所以能看到很多上年代的芯片,内部几乎没有P管(包括MOS工艺的器件也是)。 另一方面,TTL输入结构的特点,输入为H时所需电流很小,而输入为L所需的输入电流很大,这样对输出L时的驱动能力要求就很高,反而对输出H时没有驱动能力要求(TTL输入悬空时等效为H)。 但TTL的这种特点,又会带来一个比较麻烦的问题:下拉电阻值需要很大才能满足要求,而下拉电阻太大则会导致输出高时负载太重以至于无法达到规定电压,所以TTL要尽量避免使用下拉。 下图是仿真结果,因为这是一个反相器,所以下拉时输出高是所期望的,而下拉电阻超过1.8kΩ时已经无法满足TTL定义的最低高电平标准了;而上拉时,就算上拉电阻达到20kΩ,也丝毫不影响输出。 上表,TTL上下拉电阻取值与输出电压的关系。 CMOS电路 相信现在已经没多少人会在设计时选用TTL家族的器件了,可能多数人都没接触过这类器件,最常用的还是CMOS家族(HC、HCT、LVC、CD4000等)。 CMOS家族的东西就比较简单粗暴,上下对称的结构,上下管驱动能力也基本一致,这个时候输出的上下拉电阻对增强驱动能力几乎没有帮助不说,还加重了负载,属于得不偿失(其实多数情况下是无关痛痒)。 下图是基本的CMOS反相器,只需要一对互补的MOS管即可实现(现实中的CMOS反相器一般是三对这种管子级联出来的,为了提高开环增益)。 但是CMOS器件的输入悬空时,不会被拉向任何一个方向,处于一种浮空的状态,这样会造成输出紊乱,不是我们所希望的结果,这种情况下需要在输入端接入上拉或者下拉电阻给电路提供一个确定的状态。一般可拔插的对外接口(如JTAG)需要在I/O上加上上下拉电阻,有三态的总线视工作情况也可能需要上下拉,不过大多数的CMOS电路不需要额外的上下拉电阻。 上图,CMOS器件在使用是一般要加上下来避免输入悬空。 因为CMOS输入是电压控制型,输入阻抗很高,所以上下拉电阻的值可以很大,理论上用MΩ级别的电阻都没问题。 不过理论归理论,工程师得认清现实。现实的CMOS输入结构,为了保护MOS管的栅极,会在栅极上加入ESD二极管,二极管反向偏置的时候是有漏电流的,还会随温度的升高还会指数增长!所以CMOS电路的上下拉电阻一般在100kΩ以下,一些制程比较先进的CPU,I/O口的漏电流或者上下拉电流较大,上下拉电阻一般取在几kΩ级别。所以设计上下拉电阻前一定要仔细阅读芯片手册,查查I/O的输入电流,看看取什么样的电阻值才合理。 上图,CMOS输入有ESD二极管。 其他需要上下拉的情况 开集(Open-Collector)和开漏(Open-Drain)的输出结构往往也需要加上拉电阻:理清推挽、开漏、OC、OD的特点与应用。OC和OD输出结构只有下管,所以只能输出L和高阻(Hi-Z)两种状态,而高阻态是难以被电路识别的,所以需要合适的上拉电阻把高阻态转变为高态。 上图,OC(左)和OD(右)输出结构。 虽然OC和OD输出结构看起来很复古,使用时也需要外接电阻有点麻烦,但这种结构最大的好处就是可以做线与,也就是多个OC或者OD可以接到一起,只要其中一个输出L,总线就是L,这在多外设中断和电源时序控制方面很常用。 上图,OC/OD的线与接法。 I2C也是OC/OD结构,这样很轻松就能在一条数据线上双向传输数据而不需要额外的方向控制信号,而CAN总线则巧妙地利用线与特性来实现总线仲裁。 在处理OC或者OD电路的时候,一定要注意评估总线负载电容、上拉电阻与所需速度的关系,负载电容越大,速度越快,所需的上拉电阻要越小:通俗理解STM32中的上/下拉电阻。比如I2C总线,如果只挂载了一片从设备,使用4.75kΩ的上拉电阻可能就满足400kHz的总线要求了,但如果挂了10片从设备呢,1kΩ的上拉电阻也不一定能搞定100kHz的总线速度,这种时候可能得考虑总线负载隔离或者降低总线速度了。 下图是在200pF负载电容情况下,上拉电阻为500Ω、1kΩ、2kΩ、4.75kΩ和10kΩ下的波形,可以看到上拉电阻越大,对电容充电速度越慢,所以上升沿也越慢,当上拉电阻不合适时上升沿已经严重变形,无法保证正常工作。 上图,OC电路不同上拉电阻对波形的影响。 逻辑反相器可以当成放大器来用!不是开玩笑,我还真见过产品上用这种骚操作的,只需要把反相器接成反向放大器就可以了,不过逻辑器件当线性器件用,性能嘛... 上图,逻辑反相器(非门)当成线性放大器用。
可以说这个问题是很多小伙伴私底下问的最多的一个问题了!今天核桃就和大伙来聊一聊这个问题吧!一:按照芯片手册来定这个是最快的方法了,如果是觉得计算的过程比较麻烦,或者是新手的话,那直接按照手册给出的来配,不会有太大的问题,比如常用的AMS1117,如下图所示:二:通过计算来定如果要按照计算来定的话,需要分输入和输出电容来分别计算。(1)输入电容首先要明白的是,输入电容的主要是为了补偿输入电源的噪声和电压纹波。公式如下:其中:I:LDO最大的负载电流(这个需要在设计电路的时候做好评估)t:输入电压的上升时间(典型值一般取LDO启动时间或者电压阶跃响应时间,一般要求20us)ΔVin:输入电压允许的纹波(一般要求不高的话取输入电压的5%~10%问题都不大)(2)输出电容输出电容相对于输入电容复杂一点,其中最为关键的一个考虑因素就是“瞬态响应”。什么叫瞬态响应?指的是:当负载电流突然发生变化时,LDO输出的电压做出发应所需要的时间。计算公式如下:其中:ΔI:负载电流最大阶跃变化值 Δt:电流变化时间 ΔVout:输出电压允许的波动(一般取输出电压的1%~5%) 输出电容还需考虑“稳定性”,也就是说输出电容的等效电阻(ESR)需要满足LDO的稳定性要求,一般建议ESR≤1Ω,当然了,具体也可以查看芯片手册,按照手册的建议来定。选型:(1)对于体积有要求的或者PCB尺寸限制的,一般都是选择MLCC(陶瓷电容)为主,MLCC的ESR比较低(<1Ω),比较适合小尺寸和快速响应的场景下。 (2)钽电容/电解电容比较适合用于低频或者需要容值较高的场景下,当然了,也需要综合考虑,钽电容价格比较高,但精度和容量密度都比电解电容高,钽电容一般用在紧凑型的设备中,比如电脑。 总结:
一)简介: RT9293 是一款高频、异步的 Boost 升压型 LED 定电流驱动控制器,其工作原理如下: 1)基本电路结构及原理 ????查看更多目录???? RT9293的主要功能为上图的Q1. Boost 电路核心原理:基于电感和电容的特性实现升压功能。当驱动信号使能,增强型 Nmos 管导通时,电感充电,电容两端电压为电源电压,二极管防止电容放电;当 Nmos 管截止时,电感放电,其电动势与电源串联使电容两端电压抬高,从而实现升压。 2) RT9293 内部电路结构: 内部集成了支持多达 10 只 WLED 串联的背光应用和 OLED 供电的 MOSFET,还内置了软启动功能以消除冲击电流。其工作在 1MHz 的频率下,允许使用小型的元器件,可简化 EMI 问题。 3) 工作过程 使能与参考电压产生:EN 引脚上升沿使能后,在 FB 端口会输出一个参考电压 VA,该参考电压可根据使能引脚的占空比来调。当输入 PWM 信号频率小于 500Hz 时,VA 是一个 PWM 信号;输入 PWM 信号频率大于 500Hz 时,VA 相当于一个直流信号。VA 经过一个推挽结构,将外部输入的 PWM 转换为同频同占空比的高电平为 300mV 的 PWM 波,然后经过一个低通滤波器得到。 1,电流控制: 提供给 LED 的电流由外部电流检测电阻 RSET 所确定,ILED = VSET/RSET。在确定好 RSET 的阻值之后,通过控制反馈电阻上端的电压就可以控制流过 LED 的电流。其可通过两种方式接入 PWM 波进行调光,一是 PWM 接入 EN 引脚,通过改变内部的参考电压来控制外部反馈电压的稳定值;二是 PWM 接入 FB 引脚,需要用一个低通滤波器将 PWM 波转成直流信号,然后接入通过一个电阻接入 FB 引脚,实现对 VSET 的控制。 2,反馈与调节: 误差放大器会回送反馈信号 FB,通过对输出电流的监测和反馈,与内部参考电压进行比较,然后根据比较结果调整 MOSFET 的导通占空比等参数,从而实现对输出电流和电压的稳定控制。当占空比低时会产生更大误差,所以对 PWM 输入信号的占空比有最低值要求。 3,保护机制 过压保护:RT9293A 提供了 50V 的过压保护,RT9293B 提供了 50V/20V 的过压保护。当输出电压超过设定的过压保护阈值时,芯片会采取相应的保护措施,如切断输出或调整输出电压等,以防止下游电路因过压而损坏。 欠压保护:当输入电压低于芯片的欠压保护阈值时,芯片会停止工作或进入低功耗模式,以避免芯片在欠压状态下出现异常工作或损坏。 过温保护:在芯片工作过程中,如果温度升高到一定程度,超过了芯片的过温保护阈值,芯片会自动降低工作效率或停止工作,待温度降低到安全范围内后再恢复正常工作,以防止芯片因过热而损坏。 二)实际电路和电流计算 1)5寸液晶屏背光参数: 电流调节范围: 这里驱动电流最大值过大,会影响液晶屏背光管的寿命。按照液晶屏背光LED参数计算为Imax = 42.5mA。所以应该调整电阻Rset=7.58R. 这样, Imax = 42.5mA,Imin=10.3mA. 调整后的电路图如下: 2)7寸液晶屏背光参数: 根据最大电流计算Imax = 212.5mA. 根据以上电路计算 电阻Rset=1.52R. 如此:电流调整范围:Imax = 212.5mA. Imin = 51.2mA. 电路图如下:
滤波器的主要功能就是内部的滤波电路,通过滤波器,使用人员能够对特定的频率信号加以处理。为增进大家对滤波器的认识,本文将对滤波器以及滤波器的主要参数予以介绍。如果你对滤波器具有兴趣,不妨继续往下阅读哦...
电机,也称电动机(俗称马达),是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。电动机被广泛应用的推动力来自直流电动机的问...
相信很多小伙伴在遇到需要使用磁珠时,总是理不清磁珠该怎么选型,或者说什么场景下适合使用磁珠,什么场景下不适合使用磁珠,今天我们一起来好好理一理! 选型关键点:磁珠的阻值会随着频率的变化而变化,磁珠是以热量的形式散出,从而达到抑制的效果! 一:形态 磁珠主要分为插件和贴片两种封装,具体使用哪一种封装,应以项目需求为准。 二:型号含义 一般来说,不同厂家的磁珠,型号的含义上都会有所区别,在选型时应以磁珠手册为准,以TDK的MPZ2012S601ATD25为例,手册如下图所示: 其中: MPZ:表示的是这个系列的名称,这一系列主要用于抑制高频噪声。 2012:表示的是磁珠的尺寸大小。 S:表示的是物料编码。 101:表示的是磁珠在100MHZ的标称频率下表现的阻抗大小为:100Ω。101即为10*10=100Ω。 A:表示的是类型。 T:表示的是封装形式。 D25:表示的是内部代码。 三:选型参数 主要关注以下几点: ①额定电流:由于磁珠是通过热量的形式散出的,当磁珠通过较大电流时,损耗也随之增加,热量增加,所以在选型时需注意电路的工作电流需小于额定电流,一般余量为1.5~2倍即可。 ②阻抗:标称评率基本都是100MHZ,磁珠手册中也会给出相应的曲线图,曲线图中一般都会出现电阻,电抗和阻抗的三条曲线,如下图所示: ③交叉频率:磁珠的等效模型为一个电感和电阻组成,在生产制作过程中可能还存在寄生电容。 而交叉频率就是XL和R的交叉点,如下图箭头所示: 在选型时应注意有用的信号频段要小于交叉频率,无用的噪音频 段要大于交叉频率。 ④直流导通电阻(DCR):字面的意思就是直流电流通过磁珠时所表现出来的阻值大小。这个参数越小,对电压的压降越小,对信号的损耗越小。 ⑤阻抗-频率特性曲线:对于电源处的话,应该选用矮胖型曲线的磁珠,频率范围较宽,滤波范围大,当使用在信号处时,应选用瘦高型曲线的磁珠,比较有针对性,去除高频噪音,留下有用的信号。 实例:假如某芯片的工作电流为5V/100MA,,而且允许的压降为0.5V。那该如何选择磁珠? 1:首先已知后端负载允许的压降为0.5V,工作电流为100MA,那磁珠的DCR计算如下: 0.5V/100MA=5Ω 留50%的余量,即DCR<2.5Ω即可。 2:额定电流:留1.5~2倍的余量即可。 3:阻抗:因为是电源滤波,所以尽量选择阻抗-频率特性曲线矮胖型即可。 对于磁珠使用在信号处,应该知道有用信号和噪音的频段。找到有用信号附近阻抗小,噪音附近阻抗大的磁珠,具体需要根据实际的项目测试为准,需要经过多次测试验证才能找到合适的型号。
三极管优点:耐压高;缺点:电流驱动 MOS管优点:开关速度快,电压驱动 一、一键开关机电路(小鱼冠名) (知识点不多,但是电路设计很巧妙) 1.1效果 按下按键松开→ 再次按下按键松开→ 1.2电路过程及原理 1.2.1上电,开关断开 上电时,开关断开→通过,给电容充电→电容上方电压达到→三极管基级电压为0→三极管断开→MOS管栅极电压为→不小于负的→MOS管关断→ 1.2.2按下开关 电容电压为→三极管基级电压为,三极管导通;同时通过放电→MOS管栅极经三极管导通至地,MOS管栅极电压为0→小于负的→MOS管导通→,电路处于开机状态。 1.2.3松开按键 当电容电压放电到等于三极管BE之间的开启电压,约0.7v时,三极管饱和导通电流由通过提供,三极管一直开启。这时即使松开按键,电路仍处于开机状态。 三极管导通时,集电极的电压约0,所以电容的电压也会接近于0。 1.2.4再次按下按键 按下按键→电容上端电压为0,三极管基级电压为0→三极管断开,MOS管栅极电压为→MOS管关闭→ 其中,由于电阻选取的非常大,使不能通过,使三极管导通,而且电容的电压也不能升高。 1.2.5松开按键 松开按键,通过,给电容充电→电容上方电压达到,再次按下按键后,电路又处于开机状态。 1.3器件参数 输入电压3~6v,器件参数可以参考下面的数值。 1.4电路缺点 当输出端连接的负载电容比较大时,容易出现MOS管关不断的情况。可以在输出端对地接一个几百欧的限流电阻,原因如上。 1.5陈氏总结 纵观整个电路过程:开关控制电容,电容控制三极管,三极管控制MOS管。 二、延时开关电路 (本电路知识很基础,但是讲解过程非常联系单片机实际情况) 2.1效果 配合单片机程序实现长按两秒开关机,短暂按下松开其他需要的功能。 2.2电路说明 =单片机上电电压=3.3V 单片机输出口:单片机写信号 单片机输入口:给单片机信号 的作用:反馈给单片机开关S1按下与否的状态。 D4上拉电阻接到3.3v,即单片机的一直是高电平,除非按下按键,D4就导通将拉低到0.7V。由于口写程序的时候,有上下限,例如在1v以下都是低电平,2.5v以上都是高电平(模数转换)。 2.3电路过程及原理 2.3.1按下和松开开关 按下开关后,电流通过→R15→D5→S1→GND将G点电压下拉为二极管的管压降0.3v。,MOS管导通,很小,单片机上电。接受开关关闭的信号后,单片机将设置成高电平,此时由于Q9导通,无论开关是按下还是没有按下,MOS管始终导通。 类比上一个电路,该电路此时如果误操作了开关也没有事,由处的高电平来保证单片机上电,不像上一个电路利用不太可靠的电容充放电。 2.3.2延时两秒开关机 利用对开关的监视功能,开/关机时开关闭合两秒,单片机系统做亮屏/息屏、接通/断开传感器、设置高/低电平等动作,松开按钮彻底开/关机。监视下还可以编写短暂开关键的其他作用,达到长按两秒开关机,按一下就松开是其他功能。 三、与门电路(跟我学电脑冠名) (本电路十分简单,但是别出心裁的使用方法) 3.1效果 两个三极管都给高电平导通才可以驱动MOS管,输出才有电压。 四、H冠名 4.1效果 该电路和二中的电路有异曲同工之妙。 该电路可以实现软开启功能,增加一个电容(C1),一个电阻(R2)。 软开启,是指电源缓慢开启,以限制电源启动时的浪涌电流。 4.2电路过程及原理 4.2.1不上电且Control 为低电平或高阻 控制电源开关的输入信号Control 为低电平或高阻时→三极管Q2的基极被拉低到地,为低电平→Q2不导通→MOS管Q1的Vgs = 0(电源没上电)→MOS管Q1不导通→+5V_OUT 无输出。 电阻R4是为了在 Control 为高阻时,将三极管Q2的基极固定在低电平,不让其浮空。 4.2.2刚上电且Control 为低电平或高阻(实现软启动) 当电源 +5V_IN 刚上电时,要求控制电源开关的输入信号 Control 仍为低电平或高阻,即关闭三极管Q2,从而关闭MOS管Q1。 因 +5V_IN 还不稳定,不能将电源打开向后级电路输出。 电源 +5V_IN 上电完成后,MOS管G极与S极两端均为5V,仍然Vgs = 0。 电容上没有充电。 4.2.3上电完成且Control 为高电平 ①三极管Q2的基极为0.7V,可算出基极电流Ibe为: (3.3V - 0.7V) / 基极电阻R3 = 0.26mA ②三级管Q2饱和导通,Vce ≈ 0。电容C1通过电阻R2充电(现在由于三极管可以导地了),即C1与G极相连端的电压由5V缓慢下降到0V,导致Vgs电压逐渐增大。 ③MOS管Q1的Vgs缓慢增大,令其缓慢打开直至完全打开。最终Vgs = -5V。 ④利用电容C1的充电时间实现了MOS管Q1的缓慢打开(导通),实现了软开启的功能。 4.2.4上电完成且Control 为低电平 电源完全打开后,+5V_OUT 输出为5V电压。 此时将 Control 设为低电平,三极管Q2关闭,电容C1与G极相连端通过电阻R2放电,电压逐渐上升到5V,起到软关闭的效果。软关闭一般不是我们想要的,过慢地关闭电源,可能出现系统不稳定等异常。
MOS管工作时,DG、GS间结电容充电,G极电压达一定程度导通,R7泄放并加速开关。关断时,R6、D3回路放电加速开关,R6减震荡。Rc吸收尖波,D5防反峰电压击穿MOS。去掉C11、R8、D5回路,电路波形大幅震荡。 在电路中,MOS 管的 DG 和 GS 之间存在结电容,当电路工作时,DS 之间的电压会对这些结电容进行充电。随着 G 极积累的静电电压不断升高,一旦达到一定程度,MOS 管就会导通,若电压过高,甚至会导致 MOS 管损坏。此时,R7为结电容提供泄放通道,同时可以加快MOS开关速度,其阻值一般为几千欧姆左右。在MOS管关断时,R6 和 D3 构成的回路能够快速放掉栅极结电容的电荷,使得栅极电位快速下降,从而加快MOS管的开关速度。并且在高频环境下,MOSFET 的输入阻抗会降低,在特定频率范围内还会变成负阻并引发振荡,这时R6可以减少震荡。R6阻值一般较小,通常在几欧到几十欧之间。另外,由于 MOS 管存在分布电感,在其关断时会产生反峰电压。Rc部分用于吸收尖波,给反峰电压提供了释放回路。并且,D5 能够在出现反峰电压时保护 MOS 管,防止其被过高的电压击穿。经实验,若去掉由 C11、R8 和 D5 组成的回路,电路的波形会出现大幅震荡。