• 三合一“防反接、防过压、缓启动电路”

    介绍了电源电路中的防反接、过压保护机制,以及如何通过缓启动电路来优化性能。

    前天 74浏览
  • 功率放大器ADS仿真实例

    目录 一、理论基础 1. A类功放 2.B类功放 3.AB类功放 二、性能参数 1.增益 2.增益平坦度 3.三阶截点 4.线性度与1dB压缩点 5.效率 三、实例演示 1.设计指标 2.晶体管选择 3.晶体管模型 3.PD55003 仿真 一、理论基础 根据工作状态的不同,功率放大器可分为线性功率放大器和开关型功率放大器,线性功率放大器包含:A、B、C、AB类放大器,开关型功率放大器包含:D、E、F类放大器。为获得较好的线性度和高增益,因此射频PA一般使用线性功率放大器。 功率放大器的电路可以由以下几个部分组成:晶体管、偏置及稳定电路、输入输出匹配电路。 1. A类功放 A类功放输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无讯号输入它们都保持传导电流,并使这两个电流等于交流电的峰值,这时交流在最大讯号情况下流入负载。A类功放的工作方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失真(Switching Distortion),即使不施用负反馈,它的开环路失真仍十分低,因此被称为是声音最理想的放大线路设计。但这种设计有利有弊,A类功放放最大的缺点是效率低,因为无讯号时仍有满电流流入,电能全部转为高热量。 2.B类功放 B类功放放大的工作方式是当无讯号输入时,输出晶体管不导电,所以不消耗功率。当有讯号时,每对输出管各放大一半波形,彼此一开一关轮流工作完成一个全波放大,在两个输出晶体管轮换工作时便发生交越失真,因此形成非线性。 B类放大器的偏置电压设置在截止点。 3.AB类功放 AB类功放通常有两个偏压,在无讯号时也有少量电流通过输出晶体管。它在讯号小时用A类工作模式,获得最佳线性,当讯号提高到某一电平时自动转为B类工作模式以获得较高的效率。 AB类放大器的效率和线性度在A类和B类放大器之间,其最大的特点是导通角的范围为180°~360°,相应的设计目标就是实现他在一个周期的50%和100%之间的某段时间内导通的工作方式,对于单MOS管来说,就是使他的漏极有电流通过的时间多于半个周期。 通过将晶体管偏置到略高于其截止点但远低于A类放大器的中心Q点,我们可以创建一个AB类放大器电路。那么AB类放大器的基本目的是保持基本的B类配置,同时通过将每个开关晶体管偏置到略高于阈值来改善其线性度。 AB类放大器的偏置电路有电压偏置、电阻偏置、可调节放大器偏置、二极管偏置,下面以电压偏置电路为例进行讲解:公众号@电路一点通 如图所示,这里通过使用适当的固定偏置电压来实现晶体管的偏置。当输入信号变为正值时, TR1 基极电压增加,产生相似量的正输出,从而增加流过 TR1 的集电极电流向负载R L提供电流 。然而,由于两个碱基之间的电压是固定且恒定的,所以 TR1 的传导的电流增加都将导致 TR2 的传导电流相反的减少。结果,晶体管 TR2 最终关闭,留下正向偏置晶体管, TR1 ,为负载提供所有电流增益。同样,对于输入电压的负半部分,发生相反的情况。也就是说,当输入信号变得更负时, TR2 导通负载电流而 TR1 关闭。 然后我们可以看到输入时电压 VIN 为零,两个晶体管由于其电压偏置而略微导通,但随着输入电压变得更正或负,两个晶体管中的一个传导更多要么下沉来获取负载电流。由于两个晶体管之间的切换几乎立即发生并且是平滑的,因此大大降低了影响B类配置的交叉失真。然而,当两个晶体管切换时,不正确的偏置会导致尖锐的交越失真尖峰。 各类功放静态工作点选择: 二、性能参数 1.增益 增益是每个放大器最重要的指标。它表示放大器对输入信号的放大能力,以dB为单位。放大器的增益随频率而变化,频率高,放大器的损耗也就高(增益在整个频率范围内不是线性的)。 2.增益平坦度 如果放大器在工作频带内,增益的波动很大,这就意味着对与同一个输入信号,有些增益高,有些增益低,会造成输出信号在幅度上的失真。输出信号与输入信号在幅度上的失真称为AM-AM失真。为了描述放大器增益变化的剧烈程度,就引入了增益平坦度这一指标。增益平坦度是指在一定的条件下,整个工作频带内放大器的增益变化范围 3.三阶截点 信号的三阶分量将在信号的放大过程中产生。放大器增益在达到饱和点后开始下降,如果输入功率持续增加,则基频信号功率和三阶信号功率将在特定点相交,该点称为三阶截点。通过计算该值,可以在设计时确定放大器的非线性行为。在选择射频器件时,三阶交调指标的绝对值越大越好。其值越大,说明交调产物相对主信号来说越小,对系统的干扰影响越小。 4.线性度与1dB压缩点 当输出功率越大,放大器的效率就越高,但是放大器的输出功率越大时,会造成放大器线性度的恶化,产生非线性失真。当放大器工作在小信号状态时,可以视其为线性的,忽略非线性效应,得到器件的小信号模型和S参数。但是,当射频功率放大器工作在大信号状态时,不可避免的会出现非线性失真。描述功率放大器的线性度的主要参数为1dB功率压缩点P1dB,当放大器的输入功率比较低时,功率增益为常数,放大器工作在线性区。当输入功率增加时,输出功率也随输入功率线性增加。但是当输入功率增大到一定程度时,受到晶体管非线性特性的影响,放大器的输出功率不再随输入线性增加,增益压缩。若继续增加输入功率,晶体管已工作在饱和区,其输出功率几乎维持不变,1dB功率压缩点PidB指的是输出增益比线性增益小1dB时的输出功率。PidB与输入信号的大小无关,是晶体管的自身属性。 5.效率 在射频功率放大器设计中,有多少直流功率被转化为射频功率输出,是需要考虑的一个重要问题。描述此现象的指标为功率放大器的效率,以下为功率放大器常用的效率的定义: 在以上两个定义当中,一般功率附加效率的数值最小,但是功率附加效率既考虑了输出功率和直流功率的关系,又考虑到了的功率增益的影响,这样就避免出现一个没有功率增益的放大器,效率却非常高的情况出现。所以,采用功率附加效率来描述放大器是比较合理的。 三、实例演示 因为AB类放大器在射频功率放大器设计中,既兼顾到了效率,又考虑到了线性度的问题,属于各个性能都比较平均的放大器,所以传统的射频功率放大器通常都偏置在AB类状态下。本实例通过安捷伦公司的ADS 2020,设计仿真了一款应用于460M无线通信系统的AB类功率放大器。 1.设计指标 偏置类型: AB类 输出功率: 2W (33 dBm) 中心频率: 460MHz 增益:G > 26 dB PAE: >50% 电源电压: +12V 2.晶体管选择 因本实例芯片级输出功率范围是:-20dBm ~ +7dBm,选择NXP的BFU590G和ST的PD55003两个射频功率管,根据数据手册,BFU590G最大输出功率:20 dBm,在IC = 50 mA,VCE =8V 时的增益有19.5dB,三阶交调点为33dBm。PD55003最大输出功率:3W,在VDD = 12.5 V, IDQ = 50 mA时的增益有17 dB,两管增益相加有36.5dB,满足增益需求,我们以BFU590G作为驱动级,PD55003作为输出级。 3.晶体管模型 为了使用计算机进行模拟仿真设计,就要需要晶体管的模型被计算机所识别。通常所使用的仿真软件一般都至于有普遍性,所以并不会有很多晶体管的模型,使用的晶体管模型一般都可以在官网找到。而每个晶体管由于工艺、类型以及材料的不同,其函数模型复杂,所以也不可能对每个晶体管都建立专一的模型,这就需要使用者首先要根据所选晶体管的性能,通过电容电阻二极管等具有简单函数模型的元器件来建立等价的晶体管仿真模型,模拟晶体管的特性。如图所示,为PD55003晶体管的等效模型。 3.PD55003 仿真 1.直流仿真 直流仿真的目的是找到合适的静态工作点,设置静态工作点的目的就是要保证在被放大的交流信号加入电路时,不论是正半周还是负半周都能满足发射结正向偏置,集电结反向偏置的三极管放大状态。若静态工作点设置的不合适,在对交流信号放大时就可能会出现饱和失真(静态工作点偏高)或截止失真(静态工作点偏低)。 调出直流仿真模板,这里的DisplayTemplate控件的作用是插入一个仿真显示模板,如果不加入此控件,仿真出来的结果需要自己手动调出或者输入公式调出,而加入此控件仿真后可自动显示仿真结果。将晶体管模板连接好线路,设置VGS的电压仿真范围为1.5V ~ 3.6V,扫频为30个点,VDS电压仿真范围为0V ~ 30V,扫频为100个点,如下图所示: 仿真结果如下: 可以看到在放大区,IDS只随VGS的增大而增大,当VGS=3.3V,IDS=68mA,与数据手册给出的数据对比相差不大,说明仿真是准确有效的,因此我们静态工作取VGS=3.3V,VDS=12V。公众号@电路一点通 2.稳定性分析 在任何功率放大器的设计中,电路的稳定性是非常重要的。如果功率放大器不稳定,便不能发挥其正常功能而变成了振荡器,甚至有可能会烧毁电路。通常使用改善稳定性的措施都是通过一定的衰减或反馈使增益不会振荡增大,即牺牲增益来改善稳定性,在输入或输出端口串联或并联电阻,对于低噪声放大器,通常在输出端加入阻性负载,而对于功率放大器,电阻一般设置在输入端。(因为电阻会产生噪声,消耗掉功率) 绘制电路图如下: “DC_Block”的作用是起到隔直流的作用,“DC-Feed”类似射频扼流圈,经常应用在电源滤波电路中,对高频RF(射频)信号呈高阻,从而抑制高频信号进入系统,与磁珠的功能有点类似。“StabFact”控件返回的是稳定性因子。可以看到在电路输入端串联了一个电阻和电容,电容的作用是减小串联电阻所带来功率损耗。 仿真结果如图所示: 可以看到在460MHz的时候稳定因子大于1,这代表晶体管处于稳定状态,如果稳定因子小于1,则晶体管可能会发生振荡。 3.负载牵引 我们知道,功率放大器不同于小信号放大器,输出与输入总是成线性关系,因为功率放大器的功放管工作趋近于饱和区,其s参数会随着输入功率的变化而变化。一般情况下,我们只需要满足输出与输入的共轭匹配,即可满足最大功率输出的条件。但是,由于输入功率改变带来的s参数改变,简单的共轭匹配不能满足所有的输入功率点。因此,我们需要在所有的输入功率下进行仿真,得出在所有输入功率下,满足最大输出功率的条件。 在不同的负载阻抗下,功率放大器的输出功率和效率都不同,满足最大输出功率条件所对应的负载阻抗就称为最优负载阻抗,用z_opt表示。在实际情况中,不一定最大功率输出就是我们所需要的结果,因为输出最大功率带来的代价就是效率的降低,因此我们经常要对输出功率和放大效率进行一个折中,所以,我们选择的最优负载阻抗往往也不是输出功率最大的阻抗点,而是我们选择的一个功率效率折中阻抗点。LoadPull (负载牵引)技术就是通过仿真,来得到在一定输入功率下,不同的负载阻抗与输出功率和效率之间的关系。顾名思义,它是通过改变负载阻抗从而计算输出功率和效率,最终得到z_opt的技术。LoadPull的实现需要一个|分复杂且庞大的系统,但是ADS为我们集成好了LoadPull模板,我们只需要填写对应的输入功率,连接好电路,设置好偏置等条件之后,直接进行电路仿真,即可得到Loadpull结果。 通常厂家在Datasheet中,会按照最大功率输出设计提供合适的负载阻抗和源阻抗值,但是其数据含量有限,使用局限还是比较大,所以设计中必须自己测量最佳阻抗。 调出ADS的 LoadPull 模板,加上稳定性电路,替换成自己的晶体管后,根据驱动级提供的输出功率范围,填上合适的输入功率参数,Pavs是输入功率,RFfreq是工作频率,Vhigh是Vds的值,Vlow是Vgs的值。这里输入功率我们填17dBm,频率为460MHz,Vhight=12V,Vlow=3.3V。s11_rho对应的是扫描圆半径,s11_center对应的是圆心,pts对应的是采样点,z0对应的是特性阻抗。扫描圆中心点和半径需要根据自己的仿真结果进行合适的调整,采样点的设置得越多,得到的结果就越精确,但是仿真所耗费的资源就会越大,甚至会出现不收敛的情况,我们通常设置为200即可。 电路图如下所示: 仿真结果如下所示: 可以看到,等效率圆和等功率圆显示完整,均为封闭圆,意味着收敛(红色对应效率圆,蓝色对应功率圆),同时拖动m3,我们可以看到效率和功率的最大值以及对应的阻抗点。这里显示仿真出来的最大功率为32.92dBm,与我们所需要的33dBm相近,可以接受,我们记下此时的阻抗点为3.99+j6.79。 4.输出阻抗匹配 如果频率在GHz以上,为了避免LC元件所产生的的寄生效应,以及从成本考虑,一般选取串联阶跃阻抗的微带线进行匹配,同时为了抑制载波,在设计输出匹配时使用低通形式。因为我们这里的频率是460MHz,所以不考虑LC元件的寄生效应,采用分立元件进行匹配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。这种匹配条件称为共扼匹配。共轭匹配在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。阻抗匹配的概念可以推广到交流电路,当负载阻抗与信号源阻抗共轭时,能够实现功率的最大传输,如果负载阻抗不满足共轭匹配的条件,就要在负载和信号源之间加一个阻抗变换网络,将负载阻抗变换为信号源阻抗的共轭,实现阻抗匹配。 输出阻抗匹配电路图如下: 5.源端牵引 源端牵引与负载牵引做法类似,只不过是需要把负载牵引得出的输出匹配电路代入到源端牵引电路中。 电路图如下所示: 仿真结果如下所示: 可见输出功率达到33dBm,满足我们的要求。 6.输入阻抗匹配 输入阻抗匹配和输出阻抗匹配做法一样,匹配电路如下所示: 7.谐波平衡仿真测试 在ADS软件中,分析非线性电路的最主要方法是使用谐波平衡仿真控制模块,谐波平衡仿真用于仿真非线性电路中的增益压缩、噪声、谐波失真、效率和互调产物等,普遍适用于放大器、混频器、振荡器等非线性电路。对于射频功率放大器来说,采用谐波平衡法仿真的目的就是进行大信号的非线性模拟,进而得到放大器的输出1dB功率压缩点,交调分量分析等与放大器非线性相关的性能参数。 插入谐波平衡仿真模板,“MeasEqn”是公式编辑器,在里面我们可以输入所需要的的计算公式,现在模板里已经存在计算功率和PAE的公式;在“VAR”里设置漏级电压12V,栅极电压3.3V,工作频率460MHz;在“HarmonicBalance”控件里自定义设置扫描功率为16~17dBm,步进为1dBm,当我们自定义设置扫描功率后,“SweepPlan”控件默认的扫描计划将不起作用,ADS将会以我们设置的步进扫描功率进行仿真。如下图所示: 电路图如下所示 仿真结果如下图所示: 可以看到在输入功率为16 ~17dBm的情况下,期望输出功率最低可以达到33.5dBm,增益为17.5dB,PAE为58.3%,直流消耗为3.77W,电流和热耗散功率、二三四五阶交调点都可以清楚的看到。 BFU590G晶体管的仿真与此仿真类似,当两个晶体管的仿真完成后,得到BFU590G的最佳输出阻抗和PD55003的最佳输入阻抗,我们将它们进行共轭匹配,从而将两个晶体管级联在一起,至此,PA级联仿真完成,接下来的工作是打板回来调试。

    前天 56浏览
  • 4种电控界MOS管驱动电路方案

    这个电控界的MOS管,但想让它听话,还得靠驱动电路!整理了 4 种常用方案: 直接驱动:使用微控制器或逻辑门直接连接MOS管的栅极。 推挽驱动:采用NPN和PNP三极管(或NMOS/PMOS)组成推挽结构,分别负责快速充放电栅极电容。 隔离驱动:通过光耦传递信号或变压器磁耦合,实现电气隔离,适合高压场合。 专用驱动芯片:集成推挽输出、电平转换、死区控制等功能。 关键设计考虑 栅极电阻:调节开关速度,平衡EMI与损耗。 布局布线:减少寄生电感,防止振荡和电压尖峰。 保护电路:加入TVS二极管或稳压管防止过压。 总而言之:选择合适的驱动电路需综合考虑功率等级、开关频率、隔离需求及成本等因素,确保MOS管高效可靠工作。 驱动电路分类 直接驱动 原理:使用微控制器或逻辑门直接连接MOS管的栅极。 优点:结构简单,成本低。 缺点:驱动电流有限,可能导致开关速度慢、 损耗大适用场景:低功率、低频率应用,如小信号开关。 推挽驱动 原理:采用NPN和PNP三极管(或NMOS/PMOS)组成推挽结构,分别负责快速充 放电栅极电容。优点:提升开关速度,减少损耗,驱动能力强 缺点:驱动电流受限于三极管或MOS管的参数,大功率场景需额外优化。 应用:中等功率开关电路,如电机控制。 隔离驱动 光耦隔离:通过光耦传递信号,实现电气隔离, 变压器隔离:利用磁耦合传递能量,支持高频应用,需注意磁芯饱和问题。 优点:电气隔离,安全性高。 缺点:光耦传输延迟较大,不适用于高频开关,磁芯变压器占用PCB面积,难以小型化。应用:逆变器、离线电源等高压系统。 专用驱动芯片 原理:集成推挽输出、电平转换、死区控制等 功能。优点:简化设计,提供高驱动电流和保护功能。 缺点:不同芯片支持的电压范围、死区时间配置可能受限,需匹配需求。 应用:半桥/全桥拓扑、大功率开关场景。

    03-18 337浏览
  • LED背光驱动芯片应用电路详解

    一)简介: RT9293 是一款高频、异步的 Boost 升压型 LED 定电流驱动控制器,其工作原理如下: 1)基本电路结构及原理 ????查看更多目录???? RT9293的主要功能为上图的Q1. Boost 电路核心原理:基于电感和电容的特性实现升压功能。当驱动信号使能,增强型 Nmos 管导通时,电感充电,电容两端电压为电源电压,二极管防止电容放电;当 Nmos 管截止时,电感放电,其电动势与电源串联使电容两端电压抬高,从而实现升压。 2) RT9293 内部电路结构: 内部集成了支持多达 10 只 WLED 串联的背光应用和 OLED 供电的 MOSFET,还内置了软启动功能以消除冲击电流。其工作在 1MHz 的频率下,允许使用小型的元器件,可简化 EMI 问题。 3) 工作过程 使能与参考电压产生:EN 引脚上升沿使能后,在 FB 端口会输出一个参考电压 VA,该参考电压可根据使能引脚的占空比来调。当输入 PWM 信号频率小于 500Hz 时,VA 是一个 PWM 信号;输入 PWM 信号频率大于 500Hz 时,VA 相当于一个直流信号。VA 经过一个推挽结构,将外部输入的 PWM 转换为同频同占空比的高电平为 300mV 的 PWM 波,然后经过一个低通滤波器得到。 1,电流控制: 提供给 LED 的电流由外部电流检测电阻 RSET 所确定,ILED = VSET/RSET。在确定好 RSET 的阻值之后,通过控制反馈电阻上端的电压就可以控制流过 LED 的电流。其可通过两种方式接入 PWM 波进行调光,一是 PWM 接入 EN 引脚,通过改变内部的参考电压来控制外部反馈电压的稳定值;二是 PWM 接入 FB 引脚,需要用一个低通滤波器将 PWM 波转成直流信号,然后接入通过一个电阻接入 FB 引脚,实现对 VSET 的控制。 2,反馈与调节: 误差放大器会回送反馈信号 FB,通过对输出电流的监测和反馈,与内部参考电压进行比较,然后根据比较结果调整 MOSFET 的导通占空比等参数,从而实现对输出电流和电压的稳定控制。当占空比低时会产生更大误差,所以对 PWM 输入信号的占空比有最低值要求。 3,保护机制 过压保护:RT9293A 提供了 50V 的过压保护,RT9293B 提供了 50V/20V 的过压保护。当输出电压超过设定的过压保护阈值时,芯片会采取相应的保护措施,如切断输出或调整输出电压等,以防止下游电路因过压而损坏。 欠压保护:当输入电压低于芯片的欠压保护阈值时,芯片会停止工作或进入低功耗模式,以避免芯片在欠压状态下出现异常工作或损坏。 过温保护:在芯片工作过程中,如果温度升高到一定程度,超过了芯片的过温保护阈值,芯片会自动降低工作效率或停止工作,待温度降低到安全范围内后再恢复正常工作,以防止芯片因过热而损坏。 二)实际电路和电流计算 1)5寸液晶屏背光参数: 电流调节范围: 这里驱动电流最大值过大,会影响液晶屏背光管的寿命。按照液晶屏背光LED参数计算为Imax = 42.5mA。所以应该调整电阻Rset=7.58R. 这样, Imax = 42.5mA,Imin=10.3mA. 调整后的电路图如下: 2)7寸液晶屏背光参数: 根据最大电流计算Imax = 212.5mA. 根据以上电路计算 电阻Rset=1.52R. 如此:电流调整范围:Imax = 212.5mA. Imin = 51.2mA. 电路图如下:

    03-04 279浏览
  • GPIO推挽输出和开漏输出模式区别详解

    以STM32参考手册中的GPIO输出配置图为例: 看到输出驱动器虚线框中的内容,输出驱动器中的P-MOS和N-MOS两个MOS管就是实现推挽输出和开漏输出的关键。推挽输出模式下,P-MOS和N-MOS都正常工作,开漏输出模式下,只有下面的N-MOS工作,上面的P-MOS不工作。 注意:GPIO在输出模式下没有上拉下拉配置。 推挽输出(Push-Pull Output) 推挽输出的结构是由两个三极管或者MOS管受到互补信号的控制,两个管子始终保持一个处于截止,另一个处于导通的状态。电路工作时,两只对称的开关管每次只有一个导通,所以导通损耗小、效率高、既提高电路的负载能力,又提高开关速度。如图1所示: 图1 推挽输出结构推挽输出的最大特点是可以真正能真正的输出高电平和低电平,在两种电平下都具有驱动能力。 补充说明:所谓的驱动能力,就是指输出电流的能力。对于驱动大负载(即负载内阻越小,负载越大)时,例如IO输出为5V,驱动的负载内阻为10ohm,于是根据欧姆定律可以正常情况下负载上的电流为0.5A(推算出功率为2.5W)。显然一般的IO不可能有这么大的驱动能力,也就是没有办法输出这么大的电流。于是造成的结果就是输出电压会被拉下来,达不到标称的5V。当然如果只是数字信号的传递,下一级的输入阻抗理论上最好是高阻,也就是只需要传电压,基本没有电流,也就没有功率,于是就不需要很大的驱动能力。对于推挽输出,输出高、低电平时电流的流向如图 2所示。所以相比于后面介绍的开漏输出,输出高电平时的驱动能力强很多。 图2 灌电流与拉电流 但推挽输出的一个缺点是,如果当两个或多个推挽输出结构的GPIO相连在一起,一个输出高电平,即上面的MOS导通,下面的MOS闭合时;同时另一个输出低电平,即上面的MOS闭合,下面的MOS导通时。电流会从第一个引脚的VCC通过上端MOS再经过第二个引脚的下端MOS直接流向GND。整个通路上电阻很小,相当于发生短路,进而可能造成端口的损害。这也是为什么推挽输出不能实现" 线与"的原因。 开漏输出(Open Drain Output) 常说的与推挽输出相对的就是开漏输出,对于开漏输出和推挽输出的区别最普遍的说法就是开漏输出无法真正输出高电平,即高电平时没有驱动能力,需要借助外部上拉电阻完成对外驱动。下面就从内部结构和原理上说明为什么开漏输出输出高电平时没有驱动能力,以及进一步比较与推挽输出的区别。首先需要介绍一些开漏输出和开集输出。这两种输出的原理和特性基本是类似的,区别在于一个是使用MOS管,其中的"漏"指的就是MOS管的漏极;另一个使用三极管,其中的"集"指的就是MOS三极管的集电极。这两者其实都是和推挽输出相对应的输出模式,由于使用MOS管的情况较多,很多时候就用"开漏输出"这个词代替了开漏输出和开集输出。介绍就先从开集输出开始,其原理电路结如图 3所示。 图3 OC开集图 3左边的电路是开集(OC)输出最基本的电路,当输入为高电平时,NPN三极管导通,Output被拉到GND,输出为低电平;当输入为低电平时,NPN三极管闭合,Output相当于开路(输出高阻)。高电平时输出高阻(高阻、三态以及floating说的都是一个意思),此时对外没有任何的驱动能力。这就是开漏和开集输出最大的特点,如何利用该特点完成各种功能稍后介绍。这个电路虽然完成了开集输出的功能,但是会出现input为高,输出为低;input为低,输出为高的情况。图 3右边的电路中多使用了一个三极管完成了"反相"。当输入为高电平时,第一个三极管导通,此时第二个三极管的输入端会被拉到GND,于是第二个三极管闭合,输出高阻;当输入为低电平时,第一个三极管闭合,此时第二个三极管的输入端会被上拉电阻拉到高电平,于是第二个三极管导通,输出被拉到GND。这样,这个电路的输入与输出是同相的了。接下来介绍开漏输出的电路,如图 4所示。原理与开集输出基本相同,只是将三极管换成了MOS而已。**图4的开漏输出电路相当于图3中的右图。**MOS管不会导致电平反相。 图4 OD开漏 接着说说开漏、开集输出的特点以及应用,由于两者相似,后文中若无特殊说明,则用开漏表示开漏和开集输出电路。开漏输出最主要的特性就是高电平没有驱动能力,需要借助外部上拉电阻才能真正输出高电平,其电路如图 5所示。 图5 OD门上拉 当MOS管闭合时,开漏输出电路输出高电平,且连接着负载时,电流流向是从外部电源,流经上拉电阻RPU,流进负载,最后进入GND。开漏输出的这一特性一个明显的优势就是可以很方便的调节输出的电平,因为输出电平完全由上拉电阻连接的电源电平决定。所以在需要进行电平转换的地方,非常适合使用开漏输出。 开漏输出的这一特性另一个好处在于可以实现"线与"功能,所谓的"线与"指的是多个信号线直接连接在一起,只有当所有信号全部为高电平时,合在一起的总线为高电平;只要有任意一个或者多个信号为低电平,则总线为低电平。而推挽输出就不行,如果高电平和低电平连在一起,会出现短路电流倒灌,损坏器件。 总结 开漏形式的电路有以下几个特点:1、利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。2、一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS电平输出等。(上拉电阻的阻值决定了逻辑电平转换的沿的速度 。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。) 比如STM32用3.3V供电,将GPIO设置为开漏输出模式,同时引脚外部接上拉电阻到5V,则高电平时可以拉到5V,不需要接特殊的电平转换电路或芯片,即用一个电阻实现了3.3V转5V,当然上升沿速度受电阻大小影响。(理论成立,没有进行验证)3、OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。4、可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。 补充:什么是“线与”?: 在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 NMOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)就被拉到地线电平上。 因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS),晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑。 如果这个结点后面加一个反相器, 就是或 OR 逻辑。其实可以简单的理解为:在所有引脚连在一起时,外接一上拉电阻,如果有一个引脚输出为逻辑0,相当于接地,与之并联的回路“相当于被一根导线短路”,所以外电路逻辑电平便为0,只有都为高电平时,与的结果才为逻辑1。关于准双向IO,实际上结构类似于开漏输出,只不过是把上拉电阻集成到了单片机内部。(跟开漏输出有点关系,顺带放这) 如51单片机的P1 ~ P3端口 用。

    03-04 282浏览
  • 电动机的分类

        电机,也称电动机(俗称马达),是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。电动机被广泛应用的推动力来自直流电动机的问...

    02-20 180浏览
  • 过孔到底能否打在焊盘上?

    是否可以在焊盘上打过孔,需要根据具体的设计要求和工艺条件进行评估和决策。

    02-17 182浏览
  • 电子产品可靠性预计技术

    可靠性预计是为了评估设计可靠性能否满足要求,确定设计的薄弱环节,为优化设计方案提供依据,绝不是为了应付检查,那种为预计而预计的形式没有任何意义.......

    01-09 176浏览
  • 如何找到故障的电阻?

    在电路板或者电子产品的使用过程中,难免会出现一些意外的状况,比如说某些电子元器件烧了,某些电路单元不能正常工作,导致电子产品整体不能正常使用。 对于其中一些基本的元器件故障,比如说电阻电阻电感等,它的具体表现会是怎样的呢?  对于其中的电阻故障,算是比较常见的,对于电阻的损坏,原因可以分为内部的和外部的,内部的主要是电阻本身的原因,比如说电阻的物料材料有问题,本身就是来料问题(供货的料就是坏的),外部的就可能是因为比如说电流过大导致烧毁或者阻值变化或者是焊接的电路板因为外力的缘故,所以发生了形变,从而导致电阻断裂(这种在贴片电阻里算是常见的),又或者是电阻发热的热量不能够及时的排出,使得电阻在过热的条件下就损坏了。 很多时候电阻的故障困难的不是修,而是整个排查的过程。 因为对于电阻的故障,修的路径基本上就是换电阻,而这个换的过程就是电烙铁手起刀落换就完事了,但是要知道,电阻是整个电路板中可能数量最多的一个元件了,这么多元件,如果不是有明显的烧毁痕迹,又怎么去寻找这坏掉的电阻。  电阻虽然是电路板中存在数量最多的元件,但是稳定性来说损坏率并不是最高的。它的损坏最常见的有如下几类,开路、阻值变化了,短路等等。 我们平时最常用的电阻可能有碳膜电阻,线绕电阻,金属膜电阻,保险电阻等等。实际使用时也需要考虑到电阻的材质,对于分析问题也是有一定的方向重点的。对于碳膜电阻和金属膜电阻,它的损坏特点主要表现在: a,100Ω以下等低阻值和100kΩ以上的高阻值,它的损坏率会更高,而在100Ω到100kΩ曲线的电阻相对来说电阻损坏的几率更小。 b,对于100Ω以下低阻值电阻的损坏,往往表现出来的是电阻直接被烧焦了,黑黑的表面,这种也是很容易被发现的,很可能流经电阻的功率过大而导致电阻烧毁的;对于100kΩ以上的电阻,如果电阻损坏往往从外观上看不出来什么,经常没有什么痕迹留下。  而在其他类型的电阻中,也有其相应特点,比如线绕电阻,它一般是用在大电流电路中用作限流,阻值不会很大,线绕电阻在失效时也常常是因为烧坏,表面会发黑或者爆皮,裂开等;而对于保险电阻,它的作用是为了保护电路,在电路出现故障并且超过它的额定功率的时候,它就会在规定时间内断开电路,从而起到保护电路的作用,而当保险电路损坏的时候,有点时候它的表面会炸掉一块皮,有点也没有什么痕迹,但是不会出现烧焦发黑的情况。 所以在对损坏的电阻主板进行分析的时候,对于电阻这一块可以有所侧重,分析电阻的材质,不同阻值表现特点,快速分析找到损坏的电阻。  具体实施上我们可以先观察电路板上是否有烧焦电阻的痕迹,如果没有发现,然后再根据电阻损坏时可能是出现开路或者阻值异常或者高阻值电阻容易损坏的特点,来用上万用表在电路板中去测试这些是否出现的异常的开路或者其他的异常,从而找出损坏的电阻。量的过程可能比较繁琐,但这也是排查少不了的过程。 

    01-09 127浏览
  • 信号过冲问题,以及为什么电容通电瞬间像短路?

    信号过冲问题产生的危害要注意 信号过冲是常见的信号质量问题,如果出现信号过程时,会给电路带来损坏或者潜在的隐患问题。 对于信号过冲问题,常常发生在信号快速切换时,如低电平到高电平或者高电平到低电平的切换时间出现。 对于过冲问题,需要注意,它可能在信号的完整性,干扰等方面给整体电路带来隐患。 它可能会导致信号失真,使得信号的完整性与数据传输的准确性产生干扰,比如因过冲产生的振铃电压波动,就可能导致高低电平的读取造成误判,从而影响整体的信号传输。 同时过冲问题是会增加电磁辐射的,可能会干扰其他电路或设备,对于比较严重的过冲,甚至是会损坏接收端的电路的,比如说CMOS器件等(过冲时间过长或电压过大时造成器件失效)。 电容在刚一通电时,相当于短路 为什么电容器在刚一通电瞬间表现的像短路呢?这个主要原因就是电容在初始充电阶段的时候,内部是没有电压的,因此,电容两端的电势差为零,导致瞬时电流会快速进入电容,此时相当于短路。 这个就是电容的特性,在未通电的时候,电容的两端相当于一个没有充电的电荷存储设备,所以在通电的一瞬间,电容内部还没有电荷积累,这个时候就相当于一个空的容器,可以看成一个导体,并且这个导体电阻很低,电流可以快速的通过,所以此时是可以看成短路的,不过这个短路现象持续的时间极短,电容器会逐渐充满电荷不再表现出短路特性。

    01-08 203浏览
正在努力加载更多...
广告