在数字电路中,所谓“门”就是只能实现基本逻辑关系的电路。最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门和非门。逻辑门可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门。也可以将门...
阻抗匹配 减少信号反射:当信号在传输线中传输时,如果源端阻抗、传输线阻抗和负载阻抗不匹配,就会导致信号反射。反射信号会与原信号叠加,造成信号失真、过冲、下冲或振铃等问题。串联电阻可以调整信号源的输出阻抗,使其与传输线和负载的阻抗更好地匹配,从而减少反射,提高信号传输的质量和稳定性。 优化传输效率:在高频信号传输中,阻抗匹配能够使信号能量更有效地从源端传输到负载端,减少能量在传输过程中的损耗,提高传输效率。例如,在高速数字电路中,如 DDR 内存的数据线和时钟线等,通常会串联电阻进行阻抗匹配,以确保信号的完整性和高速传输的准确性。 抑制噪声和干扰 降低高频噪声:串联电阻与信号线的分布电容、负载的输入电容等组成 RC 电路,能够降低信号边沿的陡峭程度,减少信号中的高频成分。高频信号在传输过程中更容易产生辐射干扰和被其他电路耦合,通过降低高频成分可以减少电磁干扰(EMI)的产生,提高电路的抗干扰能力。例如,在一些射频电路和高速数字电路中,串联电阻有助于降低信号的高频噪声,使电路符合电磁兼容性(EMC)标准。 吸收干扰脉冲:在长信号线或与快速跳变的时钟信号靠近的布线上,信号线容易受到干扰,或耦合到毛刺或窄脉冲。串联电阻可以在一定程度上吸收这些干扰脉冲,使信号更加稳定。例如,在一些数字电路中,复位信号上串联电阻能吸收干扰信号或静电干扰,防止复位误操作。 保护电路元件 限制电流:在电路中串联电阻可以限制电流的大小,防止过电流对后续电路元件造成损坏。特别是在一些对电流敏感的元件,如芯片的输入引脚、晶体管的基极等,串联电阻可以起到限流作用,保护元件免受过大电流的冲击。例如,当 5V 信号驱动 3.3V 芯片时,串联一个小电阻可以限制流进芯片的电流,防止芯片内部的钳位二极管因过流而损坏。 有些热插拔的接口会用这个方式来支持热插拔。 防止静电放电(ESD)和电气超载(EOS):串联电阻可以与其他保护元件(如 TVS 管)一起使用,在电路受到静电放电或电气超载时,电阻可以限制电流的上升速率和峰值电流,从而保护电路元件不受过电压冲击的损害。例如,在 USB 接口的 D + 和 D - 线上通常会串联一个小电阻,用于 ESD 防护。 方便调试 测量电流:在调试阶段,串联电阻可以方便工程师通过测量电阻两端的电压来间接测量电路中的电流,而无需断开电路或使用专门的电流测量仪器。根据欧姆定律,已知电阻值和电阻两端的电压,就可以计算出通过电阻的电流,从而了解电路的工作电流情况。 进行滤波调试:在一些需要进行滤波调试的电路中,串联电阻与电容组成的 RC 滤波器可以方便地调整滤波器的参数,如截止频率等,以达到最佳的滤波效果。通过改变串联电阻的阻值,可以改变 RC 滤波器的时间常数,从而调整滤波器对不同频率信号的衰减特性。 信号衰减和调节 衰减信号幅度:在某些应用中,需要对信号的幅度进行衰减,以满足后续电路的输入要求或防止信号幅度过大导致电路饱和或失真。串联电阻可以根据需要选择合适的阻值来实现对信号幅度的衰减。例如,在音频放大器的输入级,有时会串联一个电阻来衰减输入信号的幅度,以避免放大器饱和2。 调整信号上升沿和下降沿:在一些脉冲信号电路中,串联电阻可以与其他元件一起组成电路,用于调整脉冲信号的波形。通过改变电阻的阻值和电路的参数,利用RC充放电,可以控制脉冲信号的上升沿和下降沿时间。
信号过冲问题产生的危害要注意 信号过冲是常见的信号质量问题,如果出现信号过程时,会给电路带来损坏或者潜在的隐患问题。 对于信号过冲问题,常常发生在信号快速切换时,如低电平到高电平或者高电平到低电平的切换时间出现。 对于过冲问题,需要注意,它可能在信号的完整性,干扰等方面给整体电路带来隐患。 它可能会导致信号失真,使得信号的完整性与数据传输的准确性产生干扰,比如因过冲产生的振铃电压波动,就可能导致高低电平的读取造成误判,从而影响整体的信号传输。 同时过冲问题是会增加电磁辐射的,可能会干扰其他电路或设备,对于比较严重的过冲,甚至是会损坏接收端的电路的,比如说CMOS器件等(过冲时间过长或电压过大时造成器件失效)。 电容在刚一通电时,相当于短路 为什么电容器在刚一通电瞬间表现的像短路呢?这个主要原因就是电容在初始充电阶段的时候,内部是没有电压的,因此,电容两端的电势差为零,导致瞬时电流会快速进入电容,此时相当于短路。 这个就是电容的特性,在未通电的时候,电容的两端相当于一个没有充电的电荷存储设备,所以在通电的一瞬间,电容内部还没有电荷积累,这个时候就相当于一个空的容器,可以看成一个导体,并且这个导体电阻很低,电流可以快速的通过,所以此时是可以看成短路的,不过这个短路现象持续的时间极短,电容器会逐渐充满电荷不再表现出短路特性。
IRF1404是N极性MOS管,IRF1404基本描述:-先进的工艺技术-超低导通电阻-动态的dv / dt评级-操作温度175°C-快速切换-完全Avalanche额定IRF1404主要特征:第七代HEXFET®功率MOSFETs从整流器采用国际先进加工工艺技术,...
IRF9530是P极性MOS管,IRF9530主要特征:•动态dV/dt额定值•重复雪崩额定•p沟道•175℃操作温度•快速交换•易于并行•驱动器要求简单IRF9530基本描述:第三代功率mosfts从Vishay提供设计师与最佳组合的快速切换,坚固耐用...
TIP142晶体管是一款双极性晶体管, TIP142基本描述:-单片达林顿配置-集成反平行集电极-发射极二极管 TIP142主要特征: 该装置采用“基岛”布局和单片达林顿配置的平面技术制造。由此产生的晶体管表现出极高的增益性能和...
IRF7455是N极性MOS管,IRF7455主要特征:- 在4.5V Vgs时,拥有超低Rds(on)-低电荷和低栅阻抗来降低切换损失-充分表征Avalanche电压和电流IRF7455核心参数:Rds On-漏源导通电阻:7.5 mOhmsVgs - 栅极-源极电压:- 12...
▼关注下方公众号了解更多▼ 从事电子行业的朋友们,应该对热敏电阻不陌生吧!那么笔者在这里抛出一个问题:你知道NTC热敏电阻是什么吗? 百度百科上给的定义是:热敏电阻是一种传感器电阻,其电阻值随着温度的变化而改变。按照温度系数不同分为正温度系数热敏电阻(PTC thermistor,即 Positive Temperature Coefficient thermistor)和负温度系数热敏电阻(NTC thermistor,即 Negative Temperature Coefficient thermistor)。正温度系数热敏电阻器的电阻值随温度的升高而增大,负温度系数热敏电阻器的电阻值随温度的升高而减小。它们同属于半导体器件。 NTC热敏电阻(图片来源:网络) 大家可以看到,NTC热敏电阻是热敏电阻的一部分,其电阻值是随着温度的升高而减小的,英文就用“negative”指代,而negative这个词的意思是消极的、否定的、阴性的,放在热敏电阻这个语境当中指的就是下降的,这样就明白了为什么它叫做NTC热敏电阻。 明白了NTC热敏电阻的性质,我们就可以把它应用在多种场合当中,这其中温度检测和温度补偿是用的比较多的。关注公众号:硬件笔记本 举个例子,使用晶体管或晶振的电子电路的工作情况,因温度变化而会稍稍不稳定,此时,通过将电阻值会随温度上升而下降的NTC热敏电阻嵌入电路中,便可保持电路稳定工作了。 而关于NTC热敏电阻的分类,则可分为盘式、SMD、玻璃封装二极管、树脂封装被膜线等形状,作为温度保护器件嵌入到电路中的,则是通过积层工艺制造的SMD形状贴片NTC热敏电阻。 笔者将其简称为贴片NTC热敏电阻。现在我们来看看它有哪些具体应用。 一、智能手机/平板当中的温度检测与温度补偿 智能手机或平板中,会使用多个NTC热敏电阻,用于温度检测以及温度补偿。其使用实例如下图所示: 智能手机/平板NTC热敏电阻(温度检测/温度补偿)的主要使用示例(图片来源:网络) 其基本电路是与NTC热敏电阻以及固定电阻进行串联的分压电路。CPU及功率模块等安装在发热部位附近的NTC热敏电阻,其电阻值会随温度上升而下降,因此分压电路的输出电压会发生变化。 该变化输送至微控制器后,将会保护电路元件免受过热造成的影响,或者也可进行温度补偿。 温度检测/温度补偿基本电路(图片来源:网络) 二、移动设备电池充电中的温度检测 智能手机等移动设备的电池组中(锂离子电池)除了+端子与-端子之外,还有另外一个端子----T端子。是用来温度监测的,其内部也搭载有NTC热敏电阻。 在电池温度上升时,NTC热敏电阻的温度也会随之上升,从而电阻值会下降,当超过上限充电温度时,充电控制IC将会停止充电。 下图为基本的电路示例。电池组内的保护IC会测量电池电压,从而防止过充电或过放电。 在快速充电等要求充电控制更为精准的情况时,将会使NTC热敏电阻与充电控制IC进行连接,从而用于测量环境温度。 移动设备电池充电中的温度检测(图片来源:网络) 三、微控制器的温度检测 由于智能手机等微控制器需要确保工作的可靠性,因此需要保护其免受过热所带来的影响。下图为组合了NTC热敏电阻与固定电阻的微控制器温度保护电路示例。 微控制器的温度检测(图片来源:网络) 由上图所示,NTC热敏电阻由固定电阻RS与分压电路构成。若流过过度的电路,NTC热敏电阻温度将会上升,电阻值将会下降,从而将抑制微控制器的驱动电压。 使用的电路元件为小型SMD贴片式的NTC热敏电阻以及电阻器,因此直接贴装于电路基板或发热部上,即可起到有效的温度保护作用。 四、LED照明系统的温度检测 LED照明,大家应该都不陌生吧!我们要明白的是,虽然LED照明耗电量低、寿命长,但根据不同的使用方法,会出现寿命缩短、发光效率降低等情况。关注公众号:硬件笔记本 这是什么原因呢?原来,LED器件中作为发光层的半导体PN接合面会发热,该温度称为接合温度。流过LED的电流变大时,亮度将会提高,发热量也会随之增加,从而接合温度将会变高,寿命将会缩短;若接合温度过低时,发光效率将会下降,从而亮度将会降低。 为此,为了发挥LED的最大效率,需要以最佳温度进行工作。这就需要NTC热敏电阻大显身手了。 通过将NTC热敏电阻嵌入电路,并与LED进行热耦合后,便可作为简易温度保护电路进行工作。若与最佳工作温度存在偏差,则会以NTC热敏电阻的电阻变化形式表现出来,此时将会对流过LED的电流进行补偿。最终将会在降低LED电力损耗的同时,实现长寿命化。 LED照明系统的温度检测
1、功能简述 STC89C52 是一种低功耗、高性能CMOS8位微控制器,具有8K在系统可编程Flash存储器(ROM)。STC89C52具有以下标准功能:8k字节Flash,512字节RAM,32位I/O 口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。 2、引脚分类 3、引脚功能 难易程度:P0>P2>P3>P1 1、P1 = 1个锁存器+一个场效应管驱动器+2个三态门缓冲期 准双向P1口:8个相同的结构电路,组成P1特殊功能寄存器(90H) p1 输出缓冲器能驱动4个TTL逻辑电平。 2、复用口P3特殊功能寄存器(B0H) = 1个锁存器+1个场效应管驱动器+2个三态门缓冲器+1个与非门 用作输出端口:单片机内部相关电路会送出“1”到与非门的一个输入端(第二功能输出端),打开与非门(与非门的特点是:一个输入端为“1”时,输出端与另一个输入端状态始终相反)。若要将P3端口用作输出端口,CPU给锁存器的CL端送写锁存器信号,内部总线送来的数据通过D端进入锁存器并从Q端输出,再通过与非门和晶体管两次反相后从P3端口引脚输出。 用作输入端口:单片机内部相关电路会送出“1”到与非门的一个输入端(第二功能输出端),打开与非门(与非门的特点是:一个输入端为“1”时,输出端与另一个输入端状态始终相反)。若要将P2端口用作输入端口,CPU会先往P3锁存器写“1”,让Q=1,与非门输出“0”,晶体管截止,关闭P3端口的输出电路,然后CPU往输入三态门控制端送一个读引脚控制信号,输入三态门打开,从P3端口引脚输入的信号经过输入缓冲器和输入三态门送到内部总线。用作第二功能: 3、高8位拓展地址总线P2(A0H)= 1个锁存器+2个三态门缓冲器+1个场效应管驱动器+两路开关+非门 用作输出端口:单片机内部相关电路会送控制信号到电子开关的控制端,让电子开关与P2锁存器的Q端连接。若要将P2端口用作输出端口,CPU会通过内部总线将数据送到锁存器的D端,同时给锁存器的CL端送写锁存器信号,D端数据存入锁存器并从Q端输出,再通过电子开关、非门和晶体管从P2端口引脚输出。 用作输入端口:单片机内部相关电路会送控制信号到电子开关的控制端,让电子开关与P2锁存器的Q端连接。若要将P2端口用作输入端口,CPU会先往P2锁存器写“1”,让Q=1、,Q=1会使晶体管截止,关闭P2端口的输出电路,然后CPU往输入三态门控制端送一个读引脚控制信号,输入三态门打开,从P2端口引脚输入的信号经输入三态门送到内部总线。用作地址总线引脚:单片机内部相关电路会发出一个控制信号到电子开关的控制端,让电子开关与内部地址线接通,地址总线上的信号就可以通过电子开关、非门和晶体管后从P2端口引脚输出。 4、低8位拓展地址总线P0口(80H) = 1个锁存器+2个三态门缓冲器+2个场效应管驱动器+两路开关+非门 +与门用作输出端口: 内部CPU会送控制信号“0”到与门和电子开关,与门关闭(上晶体管VT1同时截止,将地址/数据线与输出电路隔开),电子开关将锁存器与输出电路连接,然后CPU通过内部总线往P0端口锁存器送数据和写锁存器信号,数据通过锁存器、电子开关和输出电路从P0端口的引脚输出。在P0端口用作输出端口时,内部输出电路的上晶体管处于截止(开路),下晶体管的漏极处于开路状态(称为晶体管开漏),因此需要在P0端口引脚接外部上拉电阻,否则无法可靠输出“1”或“0”。 用作输入端口: 内部CPU会先往P0端口锁存器写入“1”(往锁存器D端送“1”,同时给CL端送写锁存器信号),让,VT2截止,关闭输出电路。P0端口引脚输入的信号送到输入三态门的输入端,此时CPU再给三态门的控制端送读引脚控制信号,输入三态门打开,P0端口引脚输入的信号就可以通过三态门送到内部总线。如果单片机的CPU需要读取P0端口锁存器的值(或称读取锁存器存储的数据),会送读锁存器控制信号到三态门(上方的三态门),三态门打开,P0锁存器的值(Q 值)经三态门送到内部总线。用作地址数据总线: 单片机内部相关电路会通过控制线发出“1”,让与门打开,让电子开关和非门输出端连接。当内部地址/数据线为“1”时,“1”一方面通过与门送到 VT1的栅极,VT1导通,另一方面送到非门,反相后变为“0”,经电子开关送到VT2的栅极,VT2截止,VT1导通,P0端口引脚输出为“1”;当内部地址/数据线为“0”时,VT1截止,VT2导通,P0端口引脚输出“0”。总的来说,当单片机需要将P0端口用作地址/数据总线时,CPU会给与门和电子开关的控制端送“1”,与门打开,将内部地址/数据线与输出电路的上晶体管 VT1接通,电子开关切断输出电路与锁存器的连接,同时将内部地址/数据线经非门反相后与输出电路的下晶体管VT1接通,这样VT1、VT2状态相反,让P0端口引脚能稳定输出数据或地址信号(1或0)。 5、其他非I/O口 4、最小系统工作电路 5、时钟电路——单片机的心脏 单片机需要时钟信号才能正常工作,时钟信号是脉冲信号的一种,周期固定,占宽比1:1的矩形脉冲波。时钟电路就是通过其他元器件综合来形成的时钟信号。1.晶振时钟:通过外部晶振电路来获取时钟信号,电容用于起振。2.脉冲时钟:外部从XTAL2引脚输出时钟信号。 部分51单片机不需要外部晶振也能正常工作,优点是降低成本,缺点是RC振荡频率精度不高。 单片机的时序是对象间按照时间顺序组成的序列关系,可以用状态方程、状态图、状态表和时序图表示。时序与时钟的关系:时钟要受时钟节拍的制约。时钟度量单位:时钟周期(节拍)P、状态周期S、机器周期、指令周期。1S = 1P、1机器周期 = 6S = 12P、1指令周期 = 1~4机器周期 6、复位与复位电路 复位电路的首要功能是通电复位。使单片机恢复原始默认状态。P0-P3复位默认是全高电平。复位条件:在RST/VPD引脚端出现:大于等于10ms时间的高电平3V状态。 7、51内部结构 8、中央处理器 控制器 用途:统一指挥和控制各单元协调工作 任务:从ROM中取出指令——译码——执行指令组成:程序计数器、指令寄存器、指令译码器、数据指针寄存器程序计数器(Program Counter):指向下一条指令首地址,ROM存储单元的地址指针,可修改,让程序跳转运行复位时:PC=0——复位后程序从0开始运行。指令寄存器(Instruction Register):8位寄存器,暂存指令,等待译码。指令译码器(Instruction Decoder):将指令寄存器的指令进行译码,转为可执行的电信号,在通过定时器电路将其执行。数据指针寄存器(Data Pointer):指向ROM或者RAM存储单元的地址指针(引导数据传送)DPTR是专门的16位的外设RAM或者外部ROM准备用于读取和写入的。(16位寄存器的可寻址范围为2^16=64kb,可拆成两个8位独立寄存器DPL和DPH低8位和高8位) 运算器 作用:对数据进行算术运算和逻辑运算。功能:1.对暂存器中的数据进行运算。2.结果保存到ACC中。3.运行状态反映在PSW中 累加器ACC:一个8位寄存器,用来存放操作数或中间运行结果。状态值可由指令修改,是最繁忙的寄存器。算术逻辑单元ALU:执行算术和逻辑运算,运算结果给PSW。状态字寄存器PSW:8位寄存器,存放程序运行过程中的各种状态信息的寄存器。状态值可由指令修改 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议, 原文链接:https://blog.csdn.net/qq_59572329/article/details/127574982