在工业自动化领域,PLC(可编程逻辑控制器)与上位机(或触摸屏)组成的监控系统扮演着至关重要的角色。它们不仅控制着生产线的每一个细节,还确保了生产流程的高效与安全。然而,面对复杂的控制需求和潜在的故障挑战,你是否曾感到力不从心?别担心,今天我们就来揭秘PLC与上位机监控系统的优化控制与故障处理秘籍,让你的自动化之路更加畅通无阻! 你的监控系统是否也面临这些挑战? 想象一下,当你正在监控一条繁忙的生产线时,突然发现系统无法准确识别“手动”或“自动”控制模式,导致生产流程陷入混乱。或者,当读取的模拟量数据误差巨大,你的设备却仍在盲目执行,引发了一系列不必要的故障。这些场景是否让你感到焦虑?别担心,我们这就为你揭开优化控制与故障处理的神秘面纱! 一、控制模式的灵活切换:MOV指令的妙用 在PLC与上位机监控系统中,实现“手动”与“自动”等控制模式的灵活切换至关重要。一个简单而有效的方法是使用“MOV”指令。例如,当选择“手动”模式时,将常数1移动到寄存器VB10中;当选择“自动”模式时,将常数2移动到同一寄存器。通过判断寄存器的值,系统就能轻松识别当前的控制模式。这种方法不仅易于理解,还避免了复杂的互锁程序,让控制更加灵活高效。 在你的监控系统中,是否也采用了类似的控制模式切换方法?如果有,你觉得还有哪些可以改进的地方?欢迎在评论区分享你的见解! 二、模拟量控制的滤波技巧 在处理模拟量控制时,滤波技巧至关重要。如果读取的模拟量数据误差较小,可以采用时间滤波方式,延时一段时间以减少噪声干扰。然而,当数据误差巨大时,就需要采取更复杂的滤波方法,如算平均值等。通过查阅相关资料,你可以找到适合你的系统的滤波方法,确保数据的准确性和稳定性。 现在,请尝试在你的监控系统中应用一种滤波方法,并观察其对数据准确性和系统稳定性的影响。你是否发现了任何意外的惊喜或挑战?在评论区分享你的经验和发现吧! 三、程序调试中的常见问题与解决方案 在程序调试过程中,特别是当你的程序被加入到原有设备的程序中时,可能会遇到一些棘手的问题。例如,当条件满足时,输出线圈却不接通。这时,你需要检查程序中是否存在如“JUMP”或“goto”等跳转语句,这些语句可能会导致你的程序段不被扫描。此外,还需要注意中断程序后的条件满足情况,确保程序能够正确执行。 小提示:在调试过程中,使用断点调试和逐步执行功能可以帮助你更准确地定位问题所在。不妨试试这些方法,看看它们是否能帮你更快地解决问题! 四、顺序控制程序的+10控制模式 在顺序控制程序中,采用+10控制模式可以大大简化程序结构。通过预置一个寄存器,并在每个动作完成后对其加10,你可以轻松地判断当前应该执行哪个动作。这种方法不仅易于实现,还便于插入新的动作或跳跃动作。为什么选择加10而不是加1呢?因为加10后,你可以在10个空余位置中自由选择插入新动作的位置,更加灵活方便。 练习题:现在,请尝试在你的顺序控制程序中应用+10控制模式,并观察其对程序结构和执行效率的影响。你是否发现了任何潜在的问题或改进点?在评论区分享你的思考和发现吧! 五、故障处理与报警机制 当系统出现故障时,及时准确的报警和故障处理至关重要。在设计程序时,最好将故障现象保持,并有灯光和声音报警,直到操作工复位。这样可以让操作工快速了解系统状态,并采取相应的措施。此外,对于经常出现的故障,可以设计专门的故障处理子程序,以便快速定位和解决问题。 在你的监控系统中,是否也采用了类似的故障处理和报警机制?如果有,你觉得还有哪些可以改进的地方?或者,你是否遇到过一些难以解决的故障问题?在评论区分享你的经验和挑战吧!我们可以一起探讨解决方案! 六、子程序的频繁调用与节能设计 对于经常调用的子程序,可以将其封装成子模块,以便频繁调用。这不仅可以提高程序的执行效率,还可以减少代码冗余和错误。此外,在节能设计方面,应尽量将输出设计成需要动作时才动作,一旦到位就停止输出。这样不仅可以节约能源,还可以延长设备的使用寿命。 小提示:在设计子程序和节能方案时,要充分考虑系统的实际需求和运行环境。通过合理的规划和设计,你可以让系统更加高效、节能和可靠。 七、超节拍保护与安全检测 为了确保生产机械的安全和稳定运行,超节拍保护和安全检测是必不可少的。通过设定定时器来监控每个工步动作的执行时间,并在超时后发出故障信号和采取相应的措施(如报警或停机),可以确保系统不会因某个动作的异常而引发连锁反应。此外,对于一些安全用检测开关(如急停按钮、安全光幕、极限开关等),应采用常闭(NC)输入方式,以确保在故障情况下能够及时切断电源或停止设备运行。 现在,请检查你的监控系统中是否已经包含了超节拍保护和安全检测功能。如果没有,请考虑添加这些功能以提高系统的安全性和稳定性。同时,在评论区分享你对这些功能的理解和应用经验吧!我们可以一起学习和进步! 结语与行动建议 通过今天的分享,相信你已经对PLC与上位机监控系统的优化控制与故障处理有了更深入的了解。然而,知识只有付诸实践才能真正转化为技能。因此,我们建议你立即回到你的工作现场,尝试应用这些秘籍来解决实际问题。同时,也要保持学习和探索的心态,不断寻求新的解决方案和改进点。只有这样,你才能在自动化之路上越走越远! 现在就开始行动吧!检查你的监控系统是否存在可以优化的地方,并尝试应用今天学到的秘籍进行改进。同时,在评论区分享你的进展和成果吧!让我们一起为自动化事业贡献力量!
在嵌入式系统的开发中,内存是最程序员非常需要关注的对象,尤其是MCU开发、网络协议解析、硬件寄存器操作等领域,能否对内存进行高效的利用和合理的管理,将直接影响程序的性能和硬件的稳定性。
章节重点在C++面试时,经常被问到如果高效获取线程ID,但不少同学都不知道如何回答。重点是通过__thread关键字。
众所周知,GNU/GCC在标准的C/C++基础上做了有实用性的扩展, 零长度数组(Arrays of Length Zero) 就是其中一个知名的扩展. 多数情况下, 其应用在变长数组中, 其定义如下: struct Packet { int state; int len; char cData[0]; //这里的0长结构体就为变长结构体提供了非常好的支持 }; 首先对 0 长度数组, 也叫柔性数组,做一个解释 : 用途 : 长度为0的数组的主要用途是为了满足需要变长度的结构体; 用法 : 在一个结构体的最后,声明一个长度为 0 的数组, 就可以使得这个结构体是可变长的. 对于编译器来说, 此时长度为 0 的数组并不占用空间, 因为数组名本身不占空间, 它只是一个偏移量, 数组名这个符号本身代表了一个不可修改的地址常量 (注意 : 数组名永远都不会是指针!), 但对于这个数组的大小, 我们可以进行动态分配。 注意 :如果结构体是通过calloc、malloc或 者new等动态分配方式生成,在不需要时要释放相应的空间。 优点 :比起在结构体中声明一个指针变量、再进行动态分 配的办法,这种方法效率要高。因为在访问数组内容时,不需要间接访问,避免了两次访存。 缺点 :在结构体中,数组为 0 的数组必须在最后声明,使用上有一定限制。 对于编译器而言, 数组名仅仅是一个符号, 它不会占用任何空间, 它在结构体中, 只是代表了一个偏移量, 代表一个不可修改的地址常量! 0 长度数组的用途: 我们设想这样一个场景, 我们在网络通信过程中使用的数据缓冲区, 缓冲区包括一个len字段和data字段, 分别标识数据的长度和传输的数据, 我们常见的有几种设计思路: 定长数据缓冲区, 设置一个足够大小MAX_LENGTH的数据缓冲区 设置一个指向实际数据的指针, 每次使用时, 按照数据的长度动态的开辟数据缓冲区的空间 我们从实际场景中应用的设计来考虑他们的优劣. 主要考虑的有, 缓冲区空间的开辟、释放和访问。 1、定长包(开辟空间, 释放, 访问): 比如我要发送 1024 字节的数据, 如果用定长包, 假设定长包的长度MAX_LENGTH为 2048, 就会浪费 1024 个字节的空间, 也会造成不必要的流量浪费: 数据结构定义: // 定长缓冲区 struct max_buffer { int len; char data[MAX_LENGTH]; }; 数据结构大小:考虑对齐, 那么数据结构的大小 >=sizeof(int) + sizeof(char) * MAX_LENGTH 由于考虑到数据的溢出, 变长数据包中的data数组长度一般会设置得足够长足以容纳最大的数据, 因此max_buffer中的 data 数组很多情况下都没有填满数据, 因此造成了浪费。 数据包的构造:假如我们要发送CURR_LENGTH = 1024个字节, 我们如何构造这个数据包呢;一般来说, 我们会返回一个指向缓冲区数据结构max_buffer的指针: // 开辟 if ((mbuffer = (struct max_buffer *)malloc(sizeof(struct max_buffer))) != NULL) { mbuffer->len = CURR_LENGTH; memcpy(mbuffer->data, "Hello World", CURR_LENGTH); printf("%d, %s\n", mbuffer->len, mbuffer->data); } 访问:这段内存要分两部分使用;前部分 4 个字节p->len, 作为包头(就是多出来的那部分),这个包头是用来描述紧接着包头后面的数据部分的长度,这里是 1024, 所以前四个字节赋值为 1024 (既然我们要构造不定长数据包,那么这个包到底有多长呢,因此,我们就必须通过一个变量来表明这个数据包的长度,这就是len的作用);而紧接其后的内存是真正的数据部分, 通过p->data, 最后, 进行一个memcpy()内存拷贝, 把要发送的数据填入到这段内存当中 释放:那么当使用完毕释放数据的空间的时候, 直接释放就可以了 // 销毁 free(mbuffer); mbuffer = NULL; 2、小结: 使用定长数组, 作为数据缓冲区, 为了避免造成缓冲区溢出, 数组的大小一般设为足够的空间MAX_LENGTH, 而实际使用过程中, 达到MAX_LENGTH长度的数据很少, 那么多数情况下, 缓冲区的大部分空间都是浪费掉的 但是使用过程很简单, 数据空间的开辟和释放简单, 无需程序员考虑额外的操作 3、 指针数据包(开辟空间, 释放, 访问): 如果你将上面的长度为MAX_LENGTH的定长数组换为指针, 每次使用时动态的开辟CURR_LENGTH大小的空间, 那么就避免造成MAX_LENGTH - CURR_LENGTH空间的浪费, 只浪费了一个指针域的空间: 数据包定义: struct point_buffer { int len; char *data; }; 数据结构大小:考虑对齐, 那么数据结构的大小 >=sizeof(int) + sizeof(char *) 空间分配:但是也造成了使用在分配内存时,需采用两步 // ===================== // 指针数组 占用-开辟-销毁 // ===================== /// 占用 printf("the length of struct test3:%d\n",sizeof(struct point_buffer)); /// 开辟 if ((pbuffer = (struct point_buffer *)malloc(sizeof(struct point_buffer))) != NULL) { pbuffer->len = CURR_LENGTH; if ((pbuffer->data = (char *)malloc(sizeof(char) * CURR_LENGTH)) != NULL) { memcpy(pbuffer->data, "Hello World", CURR_LENGTH); printf("%d, %s\n", pbuffer->len, pbuffer->data); } } 首先, 需为结构体分配一块内存空间;其次再为结构体中的成员变量分配内存空间。 这样两次分配的内存是不连续的, 需要分别对其进行管理. 当使用长度为的数组时, 则是采用一次分配的原则, 一次性将所需的内存全部分配给它。 释放:相反, 释放时也是一样的: /// 销毁 free(pbuffer->data); free(pbuffer); pbuffer = NULL; 小结: - 使用指针结果作为缓冲区, 只多使用了一个指针大小的空间, 无需使用 MAX_LENGTH 长度的数组, 不会造成空间的大量浪费。 但那是开辟空间时, 需要额外开辟数据域的空间, 施放时候也需要显示释放数据域的空间, 但是实际使用过程中, 往往在函数中开辟空间, 然后返回给使用者指向struct point_buffer的指针, 这时候我们并不能假定使用者了解我们开辟的细节, 并按照约定的操作释放空间, 因此使用起来多有不便, 甚至造成内存泄漏。 4、变长数据缓冲区(开辟空间, 释放, 访问) 定长数组使用方便, 但是却浪费空间, 指针形式只多使用了一个指针的空间, 不会造成大量空间分浪费, 但是使用起来需要多次分配, 多次释放, 那么有没有一种实现方式能够既不浪费空间, 又使用方便的呢? GNU C的 0 长度数组, 也叫变长数组, 柔性数组就是这样一个扩展。对于 0 长数组的这个特点,很容易构造出变成结构体,如缓冲区,数据包等等: 数据结构定义: // 0长度数组 struct zero_buffer { int len; char data[0]; }; 数据结构大小:这样的变长数组常用于网络通信中构造不定长数据包, 不会浪费空间浪费网络流量, 因为char data[0];只是个数组名, 是不占用存储空间的: sizeof(struct zero_buffer) = sizeof(int) 开辟空间:那么我们使用的时候, 只需要开辟一次空间即可 /// 开辟 if ((zbuffer = (struct zero_buffer *)malloc(sizeof(struct zero_buffer) + sizeof(char) * CURR_LENGTH)) != NULL) { zbuffer->len = CURR_LENGTH; memcpy(zbuffer->data, "Hello World", CURR_LENGTH); printf("%d, %s\n", zbuffer->len, zbuffer->data); } 释放空间:释放空间也是一样的, 一次释放即可 /// 销毁 free(zbuffer); zbuffer = NULL; 总结: // zero_length_array.c #include #include #define MAX_LENGTH 1024 #define CURR_LENGTH 512 // 0长度数组 struct zero_buffer { int len; char data[0]; }__attribute((packed)); // 定长数组 struct max_buffer { int len; char data[MAX_LENGTH]; }__attribute((packed)); // 指针数组 struct point_buffer { int len; char *data; }__attribute((packed)); int main(void) { struct zero_buffer *zbuffer = NULL; struct max_buffer *mbuffer = NULL; struct point_buffer *pbuffer = NULL; // ===================== // 0长度数组 占用-开辟-销毁 // ===================== /// 占用 printf("the length of struct test1:%d\n",sizeof(struct zero_buffer)); /// 开辟 if ((zbuffer = (struct zero_buffer *)malloc(sizeof(struct zero_buffer) + sizeof(char) * CURR_LENGTH)) != NULL) { zbuffer->len = CURR_LENGTH; memcpy(zbuffer->data, "Hello World", CURR_LENGTH); printf("%d, %s\n", zbuffer->len, zbuffer->data); } /// 销毁 free(zbuffer); zbuffer = NULL; // ===================== // 定长数组 占用-开辟-销毁 // ===================== /// 占用 printf("the length of struct test2:%d\n",sizeof(struct max_buffer)); /// 开辟 if ((mbuffer = (struct max_buffer *)malloc(sizeof(struct max_buffer))) != NULL) { mbuffer->len = CURR_LENGTH; memcpy(mbuffer->data, "Hello World", CURR_LENGTH); printf("%d, %s\n", mbuffer->len, mbuffer->data); } /// 销毁 free(mbuffer); mbuffer = NULL; // ===================== // 指针数组 占用-开辟-销毁 // ===================== /// 占用 printf("the length of struct test3:%d\n",sizeof(struct point_buffer)); /// 开辟 if ((pbuffer = (struct point_buffer *)malloc(sizeof(struct point_buffer))) != NULL) { pbuffer->len = CURR_LENGTH; if ((pbuffer->data = (char *)malloc(sizeof(char) * CURR_LENGTH)) != NULL) { memcpy(pbuffer->data, "Hello World", CURR_LENGTH); printf("%d, %s\n", pbuffer->len, pbuffer->data); } } /// 销毁 free(pbuffer->data); free(pbuffer); pbuffer = NULL; return EXIT_SUCCESS; } 长度为 0 的数组并不占有内存空间, 而指针方式需要占用内存空间. 对于长度为 0 数组, 在申请内存空间时, 采用一次性分配的原则进行; 对于包含指针的结构体, 在申请空间时需分别进行, 释放时也需分别释放. 对于长度为 0 的数组的访问可采用数组方式进行 GNU Document中 变长数组的支持: 参考: 6.17 Arrays of Length Zero C Struct Hack – Structure with variable length array 在C90之前, 并不支持 0 长度的数组, 0 长度数组是GNU C的一个扩展, 因此早期的编译器中是无法通过编译的;对于GNU C增加的扩展,GCC提供了编译选项来明确的标识出他们: -pedantic选项,那么使用了扩展语法的地方将产生相应的警告信息 -Wall使用它能够使GCC产生尽可能多的警告信息 -Werror, 它要求GCC将所有的警告当成错误进行处理 // 1.c #include #include int main(void) { char a[0]; printf("%ld", sizeof(a)); return EXIT_SUCCESS; } 我们来编译: # 显示所有警告 gcc 1.c -Wall #none warning and error # 对GNU C的扩展显示警告 gcc 1.c -Wall -pedantic 1.c: In function ‘main’: 1.c:7: warning: ISO C forbids zero-size array ‘a’ # 显示所有警告同时GNU C的扩展显示警告, 将警告用 error 显示 gcc 1.c -Werror -Wall -pedantic cc1: warnings being treated as errors 1.c: In function ‘main’: 1.c:7: error: ISO C forbids zero-size array ‘a’ 0长度数组其实就是灵活地运用数组指向的是其后面连续的内存空间: struct buffer { int len; char data[0]; }; 在早期没引入 0 长度数组的时候, 大家是通过定长数组和指针的方式来解决的, 但是: 定长数组定义了一个足够大的缓冲区, 这样使用方便, 但是每次都造成空间的浪费 指针的方式, 要求程序员在释放空间时必须进行多次的free操作, 而我们在使用的过程中往往在函数中返回了指向缓冲区的指针, 我们并不能保证每个人都理解并遵从我们的释放方式。 所以GNU就对其进行了 0 长度数组的扩展. 当使用data[0]的时候, 也就是 0 长度数组的时候,0长度数组作为数组名, 并不占用存储空间。 在C99之后,也加了类似的扩展,只不过用的是char payload[]这种形式(所以如果你在编译的时候确实需要用到-pedantic参数,那么你可以将char payload[0]类型改成char payload[], 这样就可以编译通过了,当然你的编译器必须支持C99标准的,如果太古老的编译器,那可能不支持了) // 2.c payload #include # include struct payload { int len; char data[]; }; int main(void) { struct payload pay; printf("%ld", sizeof(pay)); return EXIT_SUCCESS; } 使用-pedantic编译后, 不出现警告, 说明这种语法是 C 标准的 gcc 2.c -pedantic -std=c99 所以结构体的末尾, 就是指向了其后面的内存数据。因此我们可以很好的将该类型的结构体作为数据报文的头格式,并且最后一个成员变量,也就刚好是数据内容了. GNU 手册还提供了另外两个结构体来说明,更容易看懂意思: struct f1 { int x; int y[]; } f1 = { 1, { 2, 3, 4 } }; struct f2 { struct f1 f1; int data[3]; } f2 = { { 1 }, { 5, 6, 7 } }; 我把 f2 里面的 2,3,4 改成了 5,6,7 以示区分。如果你把数据打出来。即如下的信息: f1.x = 1 f1.y[0] = 2 f1.y[1] = 3 f1.y[2] = 4 也就是f1.y指向的是{2,3,4}这块内存中的数据。所以我们就可以轻易的得到,f2.f1.y指向的数据也就是正好f2.data的内容了。打印出来的数据: f2.f1.x = 1 f2.f1.y[0] = 5 f2.f1.y[1] = 6 f2.f1.y[2] = 7 如果你不是很确认其是否占用空间. 你可以用sizeof来计算一下。就可以知道sizeof(struct f1)=4,也就是int y[]其实是不占用空间的。但是这个 0 长度的数组,必须放在结构体的末尾。如果你没有把它放在末尾的话。编译的时候,会有如下的错误: main.c:37:9: error: flexible array member not at end of struct int y[]; ^ 到这边,你可能会有疑问,如果将struct f1中的int y[]替换成int *y,又会是如何?这就涉及到数组和指针的问题了. 有时候吧,这两个是一样的,有时候又有区别。 首先要说明的是,支持 0 长度数组的扩展,重点在数组,也就是不能用int *y指针来替换。sizeof的长度就不一样了。把struct f1改成这样: struct f3 { int x; int *y; }; 在 32/64 位下, int 均是 4 个字节,sizeof(struct f1)=4,而sizeof(struct f3)=16 因为int *y是指针, 指针在 64 位下, 是 64 位的,sizeof(struct f3) = 16;如果在32位环境的话,sizeof(struct f3)则是 8 了,sizeof(struct f1)不变. 所以int *y是不能替代int y[]的; 代码如下: // 3.c #include #include struct f1 { int x; int y[]; } f1 = { 1, { 2, 3, 4 } }; struct f2 { struct f1 f1; int data[3]; } f2 = { { 1 }, { 5, 6, 7 } }; struct f3 { int x; int *y; }; int main(void) { printf("sizeof(f1) = %d\n", sizeof(struct f1)); printf("sizeof(f2) = %d\n", sizeof(struct f2)); printf("szieof(f3) = %d\n\n", sizeof(struct f3)); printf("f1.x = %d\n", f1.x); printf("f1.y[0] = %d\n", f1.y[0]); printf("f1.y[1] = %d\n", f1.y[1]); printf("f1.y[2] = %d\n", f1.y[2]); printf("f2.f1.x = %d\n", f1.x); printf("f2.f1.y[0] = %d\n", f2.f1.y[0]); printf("f2.f1.y[1] = %d\n", f2.f1.y[1]); printf("f2.f1.y[2] = %d\n", f2.f1.y[2]); return EXIT_SUCCESS; } 0 长度数组的其他特征: 1、为什么 0 长度数组不占用存储空间: 0 长度数组与指针实现有什么区别呢, 为什么0长度数组不占用存储空间呢? 其实本质上涉及到的是一个 C 语言里面的数组和指针的区别问题。char a[1]里面的a和char *b的b相同吗? 《 Programming Abstractions in C》(Roberts, E. S.,机械工业出版社,2004.6)82页里面说: “arr is defined to be identical to &arr[0]”. 也就是说,char a[1]里面的a实际是一个常量,等于&a[0]。而char *b是有一个实实在在的指针变量b存在。所以,a=b是不允许的,而b=a是允许的。两种变量都支持下标式的访问,那么对于a[0]和b[0]本质上是否有区别?我们可以通过一个例子来说明。 参见如下两个程序gdb_zero_length_array.c和gdb_zero_length_array.c: // gdb_zero_length_array.c #include #include struct str { int len; char s[0]; }; struct foo { struct str *a; }; int main(void) { struct foo f = { NULL }; printf("sizeof(struct str) = %d\n", sizeof(struct str)); printf("before f.a->s.\n"); if(f.a->s) { printf("before printf f.a->s.\n"); printf(f.a->s); printf("before printf f.a->s.\n"); } return EXIT_SUCCESS; } \ // gdb_pzero_length_array.c #include # include struct str { int len; char *s; }; struct foo { struct str *a; }; int main(void) { struct foo f = { NULL }; printf("sizeof(struct str) = %d\n", sizeof(struct str)); printf("before f.a->s.\n"); if (f.a->s) { printf("before printf f.a->s.\n"); printf(f.a->s); printf("before printf f.a->s.\n"); } return EXIT_SUCCESS; } 可以看到这两个程序虽然都存在访问异常, 但是段错误的位置却不同 我们将两个程序编译成汇编, 然后diff查看他们的汇编代码有何不同 gcc -S gdb_zero_length_array.c -o gdb_test.s gcc -S gdb_pzero_length_array.c -o gdb_ptest diff gdb_test.s gdb_ptest.s 1c1 < .file "gdb_zero_length_array.c" --- > .file "gdb_pzero_length_array.c" 23c23 < movl $4, %esi --- > movl $16, %esi 30c30 < addq $4, %rax --- > movq 8(%rax), %rax 36c36 < addq $4, %rax --- > movq 8(%rax), %rax # printf("sizeof(struct str) = %d\n", sizeof(struct str)); 23c23 < movl $4, %esi #printf("sizeof(struct str) = %d\n", sizeof(struct str)); --- > movl $16, %esi #printf("sizeof(struct str) = %d\n", sizeof(struct str)); 从 64 位系统中, 汇编我们看出, 变长数组结构的大小为 4, 而指针形式的结构大小为 16: f.a->s 30c30/36c36 < addq $4, %rax --- > movq 8(%rax), %rax 可以看到有: 对于char s[0]来说, 汇编代码用了addq指令,addq $4, %rax 对于char *s来说,汇编代码用了movq指令,movq 8(%rax), %rax addq对%rax + sizeof(struct str), 即str结构的末尾即是char s[0]的地址, 这一步只是拿到了其地址, 而movq则是把地址里的内容放进去, 因此有时也被翻译为leap指令, 参见下一例子 从这里可以看到, 访问成员数组名其实得到的是数组的相对地址, 而访问成员指针其实是相对地址里的内容(这和访问其它非指针或数组的变量是一样的): 访问相对地址,程序不会crash,但是,访问一个非法的地址中的内容,程序就会crash。 // 4-1.c #include #include int main(void) { char *a; printf("%p\n", a); return EXIT_SUCCESS; } 4-2.c #include #include int main(void) { char a[0]; printf("%p\n", a); return EXIT_SUCCESS; } $ diff 4-1.s 4-2.s 1c1 < .file "4-1.c" --- > .file "4-2.c" 13c13 < subl $16, %esp --- > subl $32, %esp 15c15 < leal 16(%esp), %eax --- > movl 28(%esp), %eax 对于char a[0]来说, 汇编代码用了leal指令,leal 16(%esp), %eax: 对于char *a来说,汇编代码用了movl指令,movl 28(%esp), %eax 2、地址优化: // 5-1.c #include #include int main(void) { char a[0]; printf("%p\n", a); char b[0]; printf("%p\n", b); return EXIT_SUCCESS; } img 由于 0 长度数组是 GNU C 的扩展, 不被标准库任可, 那么一些巧妙编写的诡异代码, 其执行结果就是依赖于编译器和优化策略的实现的. 比如上面的代码, a 和 b 的地址就会被编译器优化到一处, 因为a[0]和b[0]对于程序来说是无法使用的, 这让我们想到了什么? 编译器对于相同字符串常量, 往往地址也是优化到一处, 减少空间占用: // 5-2.c #include #include int main(void) { const char *a = "Hello"; printf("%p\n", a); const char *b = "Hello"; printf("%p\n", b); const char c[] = "Hello"; printf("%p\n", c); return EXIT_SUCCESS; }
1、程序框架的重要性 很多人尤其是初学者在写代码的时候往往都是想一点写一点,最开始没有一个整体的规划,导致后面代码越写越乱,bug不断。 最终代码跑起来看似没有问题(有可能也真的没有问题),但是要加一个功能的时候会浪费大量的时间,甚至导致整个代码的崩溃。 所以,在一个项目开始的时候多花一些时间在代码的架构设计上是十分有必要的。 代码架构确定好了之后你会发现敲代码的时候会特别快,并且在后期调试的时候也不会像无头苍蝇一样胡乱找问题。当然,调试也是一门技术。 在学习实时操作系统的过程中,发现实时操作系统框架与个人的业务代码之间的耦合性就非常低,都是只需要将业务代码通过一定的接口函数注册好后就交给操作系统托管了,十分方便。 但是操作系统的调度过于复杂,这里就使用操作系统的思维方式来重构这个时间片轮询框架。 实现该框架的完全解耦,用户只需要包含头文件,并且在使用过程中不需要改动已经写好的库文件。 2、程序实例 首先来个demo,该demo是使用电脑开两个线程: 一个线程模拟单片机的定时器中断产生时间片轮询个时钟,另一个线程则模拟主函数中一直运行的时间片轮询调度程序。 #include #include #include #include "timeslice.h" // 创建5个任务对象TimesilceTaskObj task_1, task_2, task_3, task_4, task_5; // 具体的任务函数void task1_hdl(){ printf(">> task 1 is running ...\n");} void task2_hdl(){ printf(">> task 2 is running ...\n");} void task3_hdl(){ printf(">> task 3 is running ...\n");} void task4_hdl(){ printf(">> task 4 is running ...\n");} void task5_hdl(){ printf(">> task 5 is running ...\n");} // 初始化任务对象,并且将任务添加到时间片轮询调度中void task_init(){ timeslice_task_init(&task_1, task1_hdl, 1, 10); timeslice_task_init(&task_2, task2_hdl, 2, 20); timeslice_task_init(&task_3, task3_hdl, 3, 30); timeslice_task_init(&task_4, task4_hdl, 4, 40); timeslice_task_init(&task_5, task5_hdl, 5, 50); timeslice_task_add(&task_1); timeslice_task_add(&task_2); timeslice_task_add(&task_3); timeslice_task_add(&task_4); timeslice_task_add(&task_5);} // 开两个线程模拟在单片机上的运行过程void timeslice_exec_thread(){ while (true) { timeslice_exec(); }} void timeslice_tick_thread(){ while (true) { timeslice_tick(); Sleep(10); }} int main(){ task_init(); printf(">> task num: %d\n", timeslice_get_task_num()); printf(">> task len: %d\n", timeslice_get_task_timeslice_len(&task_3)); timeslice_task_del(&task_2); printf(">> delet task 2\n"); printf(">> task 2 is exist: %d\n", timeslice_task_isexist(&task_2)); printf(">> task num: %d\n", timeslice_get_task_num()); timeslice_task_del(&task_5); printf(">> delet task 5\n"); printf(">> task num: %d\n", timeslice_get_task_num()); printf(">> task 3 is exist: %d\n", timeslice_task_isexist(&task_3)); timeslice_task_add(&task_2); printf(">> add task 2\n"); printf(">> task 2 is exist: %d\n", timeslice_task_isexist(&task_2)); timeslice_task_add(&task_5); printf(">> add task 5\n"); printf(">> task num: %d\n", timeslice_get_task_num()); printf("\n\n========timeslice running===========\n"); std::thread thread_1(timeslice_exec_thread); std::thread thread_2(timeslice_tick_thread); thread_1.join(); thread_2.join(); return 0;} 运行结果如下: 由以上例子可见,这个框架使用十分方便,甚至可以完全不知道其原理,仅仅通过几个简单的接口就可以迅速创建任务并加入到时间片轮询的框架中,十分好用。 3、时间片轮询框架 其实该部分主要使用了面向对象的思维,使用结构体作为对象,并使用结构体指针作为参数传递,这样作可以节省资源,并且有着极高的运行效率。 其中最难的部分是侵入式链表的使用,这种链表在一些操作系统内核中使用十分广泛,这里是参考RT-Thread实时操作系统中的侵入式链表实现。h文件: #ifndef _TIMESLICE_H#define _TIMESLICE_H #include "./list.h" typedef enum { TASK_STOP, TASK_RUN} IsTaskRun; typedef struct timesilce{ unsigned int id; void (*task_hdl)(void); IsTaskRun is_run; unsigned int timer; unsigned int timeslice_len; ListObj timeslice_task_list;} TimesilceTaskObj; void timeslice_exec(void);void timeslice_tick(void);void timeslice_task_init(TimesilceTaskObj* obj, void (*task_hdl)(void), unsigned int id, unsigned int timeslice_len);void timeslice_task_add(TimesilceTaskObj* obj);void timeslice_task_del(TimesilceTaskObj* obj);unsigned int timeslice_get_task_timeslice_len(TimesilceTaskObj* obj);unsigned int timeslice_get_task_num(void);unsigned char timeslice_task_isexist(TimesilceTaskObj* obj); #endif c文件: #include "./timeslice.h" static LIST_HEAD(timeslice_task_list); void timeslice_exec(){ ListObj* node; TimesilceTaskObj* task; list_for_each(node, ×lice_task_list) { task = list_entry(node, TimesilceTaskObj, timeslice_task_list); if (task->is_run == TASK_RUN) { task->task_hdl(); task->is_run = TASK_STOP; } }} void timeslice_tick(){ ListObj* node; TimesilceTaskObj* task; list_for_each(node, ×lice_task_list) { task = list_entry(node, TimesilceTaskObj, timeslice_task_list); if (task->timer != 0) { task->timer--; if (task->timer == 0) { task->is_run = TASK_RUN; task->timer = task->timeslice_len; } } }} unsigned int timeslice_get_task_num(){ return list_len(×lice_task_list);} void timeslice_task_init(TimesilceTaskObj* obj, void (*task_hdl)(void), unsigned int id, unsigned int timeslice_len){ obj->id = id; obj->is_run = TASK_STOP; obj->task_hdl = task_hdl; obj->timer = timeslice_len; obj->timeslice_len = timeslice_len;} void timeslice_task_add(TimesilceTaskObj* obj){ list_insert_before(×lice_task_list, &obj->timeslice_task_list);} void timeslice_task_del(TimesilceTaskObj* obj){ if (timeslice_task_isexist(obj)) list_remove(&obj->timeslice_task_list); else return;} unsigned char timeslice_task_isexist(TimesilceTaskObj* obj){ unsigned char isexist = 0; ListObj* node; TimesilceTaskObj* task; list_for_each(node, ×lice_task_list) { task = list_entry(node, TimesilceTaskObj, timeslice_task_list); if (obj->id == task->id) isexist = 1; } return isexist;} unsigned int timeslice_get_task_timeslice_len(TimesilceTaskObj* obj){ return obj->timeslice_len;} 4、底层侵入式双向链表 该链表是linux内核中使用十分广泛,也十分经典,其原理具体可以参考文章:https://www.cnblogs.com/skywang12345/p/3562146.htmlh文件: #ifndef _LIST_H#define _LIST_H #define offset_of(type, member) (unsigned long) &((type*)0)->member#define container_of(ptr, type, member) ((type *)((char *)(ptr) - offset_of(type, member))) typedef struct list_structure{ struct list_structure* next; struct list_structure* prev;} ListObj; #define LIST_HEAD_INIT(name) {&(name), &(name)}#define LIST_HEAD(name) ListObj name = LIST_HEAD_INIT(name) void list_init(ListObj* list);void list_insert_after(ListObj* list, ListObj* node);void list_insert_before(ListObj* list, ListObj* node);void list_remove(ListObj* node);int list_isempty(const ListObj* list);unsigned int list_len(const ListObj* list); #define list_entry(node, type, member) \ container_of(node, type, member) #define list_for_each(pos, head) \ for (pos = (head)->next; pos != (head); pos = pos->next) #define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next) #endif c文件: #include "list.h" void list_init(ListObj* list){ list->next = list->prev = list;} void list_insert_after(ListObj* list, ListObj* node){ list->next->prev = node; node->next = list->next; list->next = node; node->prev = list;} void list_insert_before(ListObj* list, ListObj* node){ list->prev->next = node; node->prev = list->prev; list->prev = node; node->next = list;} void list_remove(ListObj* node){ node->next->prev = node->prev; node->prev->next = node->next; node->next = node->prev = node;} int list_isempty(const ListObj* list){ return list->next == list;} unsigned int list_len(const ListObj* list){ unsigned int len = 0; const ListObj* p = list; while (p->next != list) { p = p->next; len++; } return len;} 到此,一个全新的,完全解耦的,十分方便易用时间片轮询框架完成。