• 车载充电机单级拓扑结构

    车载充电机单极拓扑

    04-03 72浏览
  • 动力电池结构科普篇,建议收藏!

    动力电池是由电芯、模组和电池包等构成,是新能源汽车当中最核心的零部件和动力来源。 模组之间、电芯之间以及管理电芯的电池管理系统(BMS)内部的电流传输和信号传输需要各种连接以及电流、温度的监控,而电池对外输电要有高压的连接器。 因此电芯连接及模块连接、高低压接口、电流及温度监控的可靠性至关重要。 动力电池在整车上的布置关系图材料新知 1.电池包 电池包一般是由电池模组、热管理系统、电池管理系统(BMS)、电气系统及结构件组成。 材料新知 2.模组 电池模组可以理解为锂离子电芯经串并联方式组合,加装单体电池监控与管理装置后形成的电芯与pack的中间产品。 其基本组成包括:模组控制(常说的BMS从板),电池单体,导电连接件,塑料框架,冷板,冷却管道,两端的压板以及一套将这些构件组合到一起的紧固件。 模组的设计是为了方便BMS进行电芯管理,提高电池安全性,便于维护维修。 模组组成如下图 材料新知 3.电芯-【电池技术】动力电池结构科普篇 电芯主要由正极、负极、隔膜和电解液组成。主要工作原理是靠锂离子的在正极和负极之间的迁移实现充电和放电。 锂电池根据材料体系主要分为三类:锰酸锂、三元材料锂电池、锂酸亚铁锂。这三类电池性能各有优缺点,在市场当中也有着不同的应用。 从上述表格中可以看到,锰酸锂材料价格最低,每吨5-6万元,相应的电池循环寿命次数、储存性能的表现也是最一般的,分别是≥300次,月衰减5%以上。 三元材料锂电池材料价格每吨16-20万元,储存性能表现最好,月衰减1-2%,电池循环寿命≥600次。 锂酸亚铁锂材料价格每吨15-18万元,电池循环寿命表现最好≥1500次,储存性能在三者当中表现中等,月衰减3%。 锰酸锂:高温性能、循环性能、储存性能较差,锰在高温情况下易分解,电池组的使用寿命短不易存储。 三元材料锂电池:高低温、循环、安全性、存储及个项电性能都比较平均。体积比能量高,材料价格适中并且性能稳定。 三元材料电芯根据镍钴锰的比例又有532,811等一系列体系。最近几年比较火的是811体系的电芯。镍的比例越高,动力电池越不稳定。同时提高镍的比例可以提高电池的能量密度。所以动力电池的设计是一个平衡的过程,平衡实用性与安全性。 磷酸铁锂:安全性能好,电导率低,体积比能量低,材料成本高,低温性能很差,不能满足电动车冬天使用。 锂电池的正极是将正极材料(如LFP、NCM)涂布在铝箔(集流体)上,负极是将负极材料(如石墨、LTO)涂布在铜箔(集流体)上。 一般情况下电池是根据正极材料来命名,所以一般称三元电池或磷酸铁锂电池;而钛酸锂电池中LTO是负极材料,因此这算是以负极材料命名电池的特例。 电池的衰减可以分为两方面分析,一方面是性能上的,另一方面是安全性上的。 1)性能衰减 电动汽车在经过一定时间的使用后续航里程会有所下降,加速性能的衰减也可能被感受到。这主要可以从容量的衰减、内阻的增加、以及电池自放电的增大几个方面去分析。 2)安全性衰减 电芯根据结构不同,分为圆柱形电芯、软包电芯、方形电芯。 方形电芯 左侧为方形,有侧为圆柱形电芯圆柱电芯 典型的圆柱电芯结构包括:正极极片、负极极片、隔膜、电解液、外壳、盖帽/正极帽、垫片、安全阀等。圆柱电芯一般以盖帽为电池正极,以外壳为电池负极。 圆柱电芯标准化程度较高,常见的型号有:14650、14500(5号电池)、18650、21700等。 型号的的前两位数字代表圆柱电芯的直径(单位mm),第3、4位代表圆柱电芯的高度(单位mm),0指的是圆柱。 软包电芯 三种电芯对比,各有优势。结合生产工艺的方便性,现在国内电动车主要用的是方形电芯。 材料新知 4.电池管理系统(BMS) BMS(电池管理系统)功能主要有三种:通过测量动力电池的荷电状态,为驾驶员提供剩余的使用电量,以便提醒驾驶员能及时为电动电池进行充电; 其次是对电池温度进行监控管理,检测电池工作时的温度,并使用吹分机或散热片来确保电池工作在最佳状态; 最后是实现电池的均衡管理,由于出厂制造误差、或者使用过程中的存在通风性差异,电化学性能转换不一等情况,对电池电压、剩余电量进行检测,以防过度充电。 材料新知 5.电池发展趋势5.1无钴电池-【电池技术】动力电池结构科普篇 三元锂电池全称为“三元聚合物锂电池”,是指正极材料使用镍钴锰酸锂(NCM)或者镍钴铝酸锂(NCA)的三元正极材料的锂电池,其中主要用于稳定材料层状结构、提高材料循环和倍率性能的钴元素,是三元电池中不可或缺的贵金属。 一直以来,钴的价格波动极大程度上影响着三元材料的价格,可要知道的是,全球有超过一半的钴均产自刚果(金),资源的过于集中也加剧了全球钴供应链的脆弱性。 成本问题一直是新能源汽车市场发展的绊脚石,作为核心成本的“动力电池”一直被寄予希望能够尽快降低成本,三元锂电池在降低钴比例和含量后,会相应地降低整车的成本,钴价波动给企业带来的影响也将被削弱,“忐忑”的企业开始变主动为被动,这将有利于推动新能源汽车市场的发展。 5.2固态电池 固态电池是一种电池科技。与现今普遍使用的锂离子电池和锂离子聚合物电池不同的是,固态电池是一种使用固体电极和固体电解质的电池。 由于科学界认为锂离子电池已经到达极限,固态电池于近年被视为可以继承锂离子电池地位的电池。 固态锂电池技术采用锂、钠制成的玻璃化合物为传导物质,取代以往锂电池的电解液,大大提升锂电池的能量密度。 固态电解质具有较高的电化学稳定窗口,可与高电压的电极材料配合使用,提高电池的能量密度; 固态电解质具有高机械强度,在电池循环过程中有效抑制锂枝晶的刺穿,试具有高理论能量密度的金属锂作为负极材料成为可能 固态电解质缺点(现阶段发展遇到的问题):电极和电解质之间超高的固固接触阻抗。 5.3刀片电池 刀片电池是一种全新的设计理念,在采用长电芯的同时,省去了中间模组环节,直接把电芯装到电池系统里面。 产品的长度是148 mm、厚度是79mm、高度是97mm,内部结构是卷绕,看起来像一块板砖。 刀片电芯长度是960mm,厚度是 13.5 mm,高度为 90 mm,内部结构是叠片。因其长而薄的形状酷似刀片,因此得名刀片电池。 5.4 叠片工艺 叠片工艺是将正极、负极切成小片与隔离膜叠合成小电芯单体,然后将小电芯单体叠放并联起来组成一个大电芯的一种Li离子电芯制造工艺。 例如软包锂电池,靠的是“叠”,如“z”字形叠片,先把正负极原料裁切成同样大小的矩形极片,再分别叠到隔膜上,隔膜“Z”字形穿行其间,隔开两极,最后包上铝塑包装。 叠片工艺过程繁琐,主要是极片与隔膜裁切成片。但极片分切合格率低,质量(断面、毛刺等)很难保持高度一致性,且对齐精度不够,这块就对制作工艺的质量要求比较高了。这也是叠片电池没有普及的主要原因。 5.5 CTP/CTC-【电池技术】动力电池结构科普篇 CTP技术全称为Cell To Pack,通过取消模组设计,直接将电芯集成为电池包,电池包又作为整车结构件的一部分集成到车身地板上。 这种方式减少了模组本身的侧板、端板(模组结构件)和原本用于分隔模组以及帮助模组连接的横梁、纵梁(电池包装配支撑结构)等材料,整个电池结构极大简化,利用空间得到释放,同等尺寸的电池包容量得以扩展、电池组质量得以减轻,由此带来电池能量密度的提高和成本的降低。 传统技术 vs CTP vs CTC CTC的出现,将突破PACK的限制,直接涉及到汽车底盘,这是整车最为关键的核心部件,是整车厂商经历长期发展所积累的核心优势所在,是电池企业/专业PACK企业难以独立开发的。所以现在一些电池供应商开始策划底盘开发。

    03-18 241浏览
  • 新能源卡车电机技术细节

    一、主要部件 1.定子 定子是电机中静止不动的部分,就像房子的地基一样稳固。它由铁芯和绕组组成,铁芯是用硅钢片叠压而成,能有效减少能量损耗。绕组则是用铜线绕制而成,铜线的粗细和绕法直接影响电机的性能。 在新能源卡车上,定子设计要考虑散热问题。因为卡车经常要拉重货,电机工作强度大,发热量也大。所以工程师们会在定子里设计专门的冷却通道,让冷却液流过,带走热量。(下图来源:百度号,作者:卡车之家,2023-10-26) 2.转子 转子是电机中转动的部分,就像旋转的舞者。在新能源卡车上,主要采用永磁同步电机,转子上装有强力磁铁。这些磁铁不是普通的磁铁,而是用稀土材料制成的钕铁硼磁铁,磁性特别强。(下图来源:百度号,作者:卡车之家,2023-10-26) 转子的设计要特别注意平衡性。因为卡车经常在不平的路面上行驶,如果转子不平衡,就会产生振动,影响电机寿命。所以制造时要经过严格的动平衡测试。(下图来源:百度号,作者:卡车之家,2023-10-26) 3.轴承 在设计和制造电机时,制造商需要考虑轴承的选型和使用寿命。毕竟,轴承损坏对于电机来说,是一种非常严重的机械故障。(下图来源:百度号,作者:卡车之家,2023-10-26) 二、技术参数 新能源卡车电机的技术参数就像它的身份证,告诉我们它的能力有多大。主要参数包括: 额定功率:一般在200-300千瓦,相当于270-400马力 峰值扭矩:能达到2000-3000牛米,比柴油机还猛 最高转速:约12000转/分钟,比家用车电机快得多 效率:能达到95%以上,比柴油机高出一大截(下图来源于网络) 这些参数决定了卡车的载重能力、爬坡能力和续航里程。 三、应用 新能源卡车电机已经在很多地方投入使用。比如在港口,电动卡车用来转运集装箱;在城市里,电动环卫车在清扫街道;在矿区,电动矿卡在运输矿石。 这些电动卡车不仅噪音小、零排放,而且运营成本低。虽然买的时候贵一些,但用电比用油便宜,长期使用更划算。(下图来源于网络) 四、总结 新能源卡车电机技术正在快速发展,性能越来越好,成本越来越低。它正在改变着货运行业的面貌,让我们的天空更蓝,空气更清新。随着技术的进步,相信不久的将来,我们会看到更多电动卡车奔驰在路上,成为绿色物流的主力军。

    03-17 101浏览
  • 双电机相对于单电机加主减速器或变速箱方面的优势

    对于电动汽车来说,双电机相对于单电机加主减速器或变速箱的方案在提高驱动效率方面的优势: 第一,单电机在低速、高速轻载等情况下,效率降低比较严重。 电动机的高效区间虽然比内燃机大得多,但是汽车的转速和转矩要求太宽了:强大的加速性能和爬坡能力需要大的扭矩,而速度从零到上百km/h则对转速范围有非常高的要求。 虽然大部分中高速工况下电动机的效率都能很高,但是在低速重载、高速轻载等情况下,电动机的效率会比高效率的区间下降20-30%。 双电机则可以通过不同的搭配,让系统的高效区扩大,提升效率。 第二,双电机可以提高制动能量回收的效率。 在双电机耦合驱动系统中,有四个可能的操作模式:单电机驱动模式、双电机驱动模式、单电机再生制动模式、双电机再生制动模式。 驱动效率和回收效率其实是一回事,当电动机工作在电动模式的时候就是驱动效率,工作在发电模式的时候就是回收效率,两台电机拥有更多的高回收效率空间,可以提高制动能量回收的效率。 第三,双电机无动力中断。 单个电机要想达到更高的效率可以通过搭配多档位变速箱实现,但是如果搭配变速箱,就会有换档动力中断的问题,而使用双电机协调控制则不会出现动力中断。 第四,单个电机如果要满足高性能(高扭矩)和高转速范围,设计制造难度大,总重量也大。 通过把单个电机分解为两个电机,可以让电机的制造难度降低,总重量也可以降低。 实际上,一台100kW的电机性能不需要由一台60kW的电机和另一台40kW的电机加起来提供,一般情况下,一台40kW左右和一台30kW左右的电机组成的双电机系统就可以提供甚至超过一台100kW电机的性能,同时总重量一般可以降低30%甚至更多。 目前新能源汽车采用的电机一般只有两种:永磁同步电机和异步感应电机。它们在整个电机体系中的位置如下。 两种电机,前后各一个,就得到了4种排列组合。下文所列车型仅为部分,仅供参考。 双感应电机 1、奔驰EQC 电动机方面,奔驰EQC采用了前后双感应异步电机的组合,两个异步电动机分别位于前轴和后轴,为了降低能耗,车辆还配有智能动力传动系统,前电动机经过了优化,在中低速负载的情况下可以实现最佳效率,而后电动机就负责提供更强的动力,来让车辆保持更好的性能。整个电动系统的最大功率为300kw,峰值扭矩可达到765N.m,0-100km/h加速时间为5.1秒,最高车速可达180km/h,百公里能耗25kW·h左右。 EQC的前后双感应异步电机的设计,从数据来看,转矩更大,在起步阶段能提供更强的加速度,拥有更高的极限转速,在高速工况下能提供更强的动力输出。这套系统的优缺点很明显,将驱动电机、单机减速器和电机控制系统进行“3合1”集成,可以减少散热管路和高压线束的使用,成本更低,在电机布置上有更大的自由度;但是能耗大、体积大是致命弱点,由于使用的是感应电机,在城市低速的工况里,会比永磁电机效率更低。 2、奥迪e-tron 奥迪R8 etron中央双电机构型的结构特点与集中式电机驱动构型相似,两个驱动电机和两个减速器对置布置于车架上,通过较长的半轴与车轮相连,独立驱动两侧车轮。 其簧下质量小,制造技术成熟,应用安装方便,但是传动系统仍需万向节和传动半轴,且占用一定的底盘空间,造成车内设计空间有限,一般多用于高性能汽车或卡车上。下图为Audi R8 etron后驱双电机。 左右车轮独立驱动的巨大优势在于,轮间的转速差、动力分配可以任意调节,通过扭矩的合理分配,便能够对车辆的转向进行辅助,这比传统车辆上的轮间扭矩分配调整范围要大得多,只要控制程序够完善,那么这辆车的运动特性将远远胜过传统动力的后驱车。 3、蔚来ES8创始版 ES8搭载XPT'三合一'双电机驱动系统,配备前后感应+永磁双电机。XPT 100-300kW 感应电驱动系统平台,兼顾经济性与性能表现。支持与不同类型、不同功率的电驱动系统进行组合,尤其适合配置为四驱车型的前辅驱。感应电驱动平台首款产品拥有240kW高功率高性能异步感应电机拥有、420N·m大扭矩,传动效率超过97%,在高速运转的情况下,仍能实现稳定而强劲的动力输出。XPT 240-300kW 感应电驱动系统平台,兼顾经济性与性能表现。支持与不同类型、不同功率的电驱动系统进行组合,尤其适合配置为四驱车型的前辅驱。极低的拖拽损耗表现,有助于提升整车续航里程。 首款量产品XPT 240kW感应电驱动系统拥有240kW高功率、420N·m大扭矩、15000rpm高转速,高速大扭矩齿轮箱传动效率超过97%,所搭载的铜转子感应电机在高速运转的情况下,仍能实现稳定而强劲的动力输出,其PEU电机控制器拥有独特的双三相拓扑架构设计,搭载核心IGBT功能模块,输出最强功率。 XPT100-200kW永磁电驱动系统平台,搭载完全自主开发的永磁同步电机,轻量化的一体机身设计,大幅缩小PEU体积的同时提升扭矩,提供更优化的整车装载方案。永磁电驱动平台首款产品拥有160KW大功率高效率永磁同步电机拥有,305N·m大扭矩,高度模块化设计,电能转化效率达96.7%,拥有业内领先的功率密度,紧凑、高效、强劲的动力组合,同样带来卓越的转化效率和动力输出,现搭载于蔚来ES8系列,ES6性能版和EC6系列车型。 搭载完全自主开发的永磁同步电机,电机采用扁线绕组工艺,EDS最高效率达94%。轻量化的一体机身设计,大幅缩小PEU体积的同时提升扭矩,提供更优化的整车装载方案。首款量产产品160kW电驱动系统拥有160kW高功率、305N·m大扭矩、15000r/m高转速。使用i-Pin扁导线技术的永磁同步电机,电能转化效率达96.7%,紧凑型模块化的设计结构支持同结构下电机输出功率的灵活变化,为底盘的动力布局释放更多空间,支持正反向装配,支持与不同功率、不同类型的电驱动系统组合,支持前后驱及四驱动力配置。 双永磁电机 1、比亚迪汉 2020年7月,比亚迪汉EV四驱版和两(前)驱版上市。基于“e+平台”的汉EV四驱版的前置“3合1”驱动总成最高转速15500转/分、最大输出功率163千瓦;后置“3合1”驱动总成最高转速15500转/分、最大输出功率200千瓦且由SIC电控抑制驱动电机功率过载与过热;搭载的刀片电池系统装载电量76.9度电、最大充电功率整100千瓦;整车车自重1.9吨,NEDC续航里程550公里。 无论汉EV两驱版,还是四驱版,在前置动力舱内布设的分系统和前置“3合1”电驱动总成完全一致。只是汉EV四驱版多出了1组后置“3合1”电驱动总成,并且采用模块化设定。首次引入低导电率冷却液为刀片电池提供“冷量”与“热量”交换,再次提升“电”方面的主动安全性。 理论上,模块化的后置“3合1”电驱动总成拆卸或安装,既可成为两(前)驱或四驱车型。而汉EV两(前)驱版与四驱版的多连杆悬架和后转向节完全通用。 在铝材质后转向节上固定了1组电子驻车电机、后传动轴,两组拉杆锚点处于同一个中心线。汉EV四驱版与汉EV两(前)驱版的后悬架完全一致,甚至采用这种结构的秦ProEV、宋ProEV,也都具备模块化加装后驱动模块的能力。 在表象上,汉EV两(前)驱版和四驱版的最大不同,是多了一组后置电驱动总成。这组代表了比亚迪新能源车用电驱动技术最高水准的TZ200xSE型“3合1”电驱动总成,不仅转速提升至15500转/分,最大输出功率拉高至200千瓦、电控系统首次引入SIC技术。 汉EV四驱版搭载的后置“3合1”电驱动总成,是比亚迪自行制造的技术含量最高的乘用车用电机。为了应对更高转速带来的过热引发的“退磁”问题,比亚迪为这套200千瓦级“3合1”电驱动总成的控制模块引入了SIC电控,为的是降低全负载工况的发热量与内阻,借此换来的是更好的可靠性。 基于比亚迪拥有自行设计和量产IGBT和SIC电控的能力,比亚迪为性能典范的汉EV两(前)驱版前置“3合1”电驱动总成适配IGBT4.0电控;汉EV四驱版后置“3合1”定驱动总成的输出功率提升至200千瓦、转速保持15500转/分同时,采用SIC电控用于驱动电机控制系统,可以持续全功率大倍率放电时,拥有更高的击穿电压强度、更低的电热损耗铝和更高的热导率。 2、小鹏P7的四驱版 小鹏P7的四驱高性能版,在前轴和后轴各布置了一个永磁同步电机。具体到动力参数,前电机最大功率196kW,最大扭矩390Nm;后电机最大功率120kW,最大扭矩265Nm。综合来看,能够爆发出316kW的最大功率和655Nm的最大扭矩。基本上可以稳压3.0T性能车的动力水平。 将电机、电控、减速器高度集成,组成高性能三合一电驱系统。相比传统分散型电驱布局,三合一电驱系统效率更高、结构更紧凑、重量更轻、车内布置更规整、可靠性更强。 整套电驱系统体积仅18.6L,功率密度达到行业领先的2kW/kg;通过系统优化匹配,电机系统最高效率>95%,NEDC综合工况效率大于85.5%。作为电驱系统的核心,小鹏P7搭载目前国内性能强劲的后驱永磁同步电机,最大功率196kW、峰值扭矩390Nm。配合最大功率120kW、峰值扭矩265Nm的前电机,四驱高性能车型综合功率316kW、扭矩660Nm,0-100km/h加速时间仅需4.3s,越级对标百万级性能跑车。 依托前后双电机布局,小鹏P7四驱高性能车型具备可全域无级动力分配的四轮驱动能力。两台电机分别对前后轮独立控制,不同工况下均能够提供充足的扭矩和功率,实现各种路况下的全天候牵引力控制。 相比传统机械四驱系统,小鹏P7的双电机四驱可针对前后轮扭矩分别进行智能控制,扭矩比例在0-100%全域范围内无极分配,且动力调节速度更快,带来更强的车辆稳定性及操控性能。不同驾驶场景下,P7双电机四驱系统设置了不同扭矩分配策略,充分平衡整车的动力性、经济性和操控性能,使各项性能趋于最优。 3、保时捷Taycan Taycan前后采用永磁同步电机,后电机动力更强提供449马力,406 lb-ft(550Nm,但turbor S能提供到450lb-ft - 610Nm),永磁同步电机相对于感应电机(tesla 采用感应电机)他的优势是高效(中低速更明显),体积小,更好的散热性能但价格相对高。 Taycan 电机采用hairpin女性扎辫子方式,这个方式对于传统方式更加高了性能和效率,但在高速的时候容易导致交流的流失而且产生性能问题所以在早期设计特别注意。但hairpin 的方式不是保时捷独有,很早之前通用和本田在他们的Volt和PRIUS上已经使用。 永磁同步+感应异步双电机 1、特斯拉Model 3性能版&Model Y 特斯拉 Model 3 前轴仍采用交流异步电机,后轴则采用永磁同步电机。对比交流异步电机,永磁同步电机的外形尺寸更紧凑,运作效率高且续航更长,更容易控制。 在 Model Y中,特斯拉继续亦采用永磁同步电机方案。采用感应+永磁驱动电机搭配方案能够较好利用感应电机高效区在高速、永磁电机高效区在低速的特点,进行两者工作区域效率的互补。 特斯拉拥有5种型号的驱动电机,包括3台圆线电机和2台扁线电机。相比圆线电机,扁线电机槽满率提升近30%可使电机体积减小,宽截面使其绕组温升降低17.5%,能让电机输出功率更高,有效降低材料成本和功率密度。 当Model Y搭载扁线电机后,电机体积和功率密度皆有所优化。在特斯拉的示范效应下,比亚迪、大众、蔚来、理想等车企皆开始采用扁线电机。 2、全新蔚来ES8 23款ES8依旧采用双电机四驱,作为旗舰款也是标配了,新车配备前后双电机四驱,采用前 180kW 永磁 + 后 300kW 感应电机,系统综合功率 480kW,峰值扭矩 850N・m,实现零百加速 4.1s。前后电机除了功率升级,性能更强之外,体积更小了,效率也有一定的提高。 3、大众ID系列 电机方面,大众ID.4CROZZ采用前电机异步感应+后电机永磁同步电机的配置,这方面没太多可说的。 行业发展已经证明,目前技术下感应+永磁的组合就是最优配置。 值得一提的是,一汽-大众ID.4CROZZ的电机均由大众自主开发和生产。 2024款ID.6 CROZZ提供了多种选择,满足不同消费者的需求。后驱版搭载永磁同步电机,峰值功率可达150kW,峰值扭矩为310N·m。续航方面,根据CLTC综合工况,续航里程可达601km。而PRIME款为双电机四驱版本,搭载前交流异步电机和后永磁同步电机,输出扭矩为162/310N·m,峰值输出功率为80/150kW,续航里程为560km。 哪种方案好? 首先,由于感应异步电机大部分情况下效率低于永磁同步电机,因此双感应电机的系统效率再高也高不哪去,带来的结果就是续航里程较低。在中国市场上,双感应异步电机的电动车销售情况一般,算是一个侧面印证。 特斯拉早斯车型Model S/X采用的双感应电机方案,后来到了Model 3/Y上就将其中一个换成了永磁同步电机,新改款的Model S/X也将放弃双感应电机方案 —— 若双感应电机很好,特斯拉有必要换吗? 相应的情况也发生在蔚来身上,且对比更加强烈:全新ES8将老ES8的其中一个感应异步电机换成永磁同步电机之外,续航直接提升了60公里,可以说是立竿见影。 类似的,比亚迪的电动车也逐渐从汉的双永磁电机,进化到前异步后永磁的优化配置方案。 如果非要用双永磁同步电机,也有一种优化方案就是给前驱加个离合器,这样在不使用前电机的时候断开,避免机械摩擦损耗和铁耗。例如韩国现代E-GMP平台的电动车就是这么设计的。 总结 其实采用双电机方案的还有很多,例如:上汽Marvel X双电机动力耦合方案、 巨一双电机多挡动力总成、hofer后驱双电机构型、上汽齿双电机、 AVL双电机电驱产品、广汽双电机产品、 Daimler Benz、采埃孚双电机轮边驱动客车桥、奔驰双电机轮边驱动卡车桥、越博动力双电机集成4挡箱电驱桥、绿控双电机集成2挡箱电驱桥、凯博易控双电机驱动系统、AxleTech双电机驱动桥等。 当然,并不是双电机什么都好,虽然双电机效率方面有大的提升,性能方面也有保证,但是双电机相对于单电机结构更加复杂,需要更加复杂的动力耦合装置和更加复杂的控制算法。

    03-13 124浏览
  • 简化的busbar设计

    我刚刚接触新能源电驱时候,那时候电机还是以圆线居多,没有busbar的概念,后来扁线电机发展起来才多了这个零部件。 Busbar是新能源汽车电机中的重要部件,用于传输电流。早期的busbar设计非常复杂,主要因为扁线出线的自由度较低,绕组成型技术尚不成熟,以及对风险的担忧。如下图,该busbar就做的非常大,从图片看工艺也肯定不简单,因此成本会比较高,良品率也不高。 某新能源车企专利 这种复杂的设计不仅增加了制造成本,还影响了良品率。 随着大家对扁线电机的绕组调整有了更深入的理解。通过优化绕组排列,可以使三相出线更加接近,从而使busbar设计变得更加简单。如下图,这种简化的busbar设计不仅降低了成本,还提高了生产效率(注:塑料尼龙还是不要轻易去掉,防止定子振动焊点开裂)。 某新能源公司专利 降本小结: 假设busbar材料是pps+紫铜。pps降低50g,紫铜降低100g,那么光材料成本下降差不多10元rmb,如果结构简单,那么省的会更多。 02# 取消油环和导油板 在新能源汽车市场中,为了实现高效的冷却效果,油冷电机逐渐成为主流。作为油冷电机先驱,特斯拉是没用导油环的,最早设计是通过转子甩油去喷淋端部,但是这个稳定性不高,因此目前国内大部分油冷电机设计通常包括油环和导油板等零部件,这些零部件会增加了成本,如下图,3为导油环,2是导油板。 某新能源油冷电机专利 目前一些国内公司开始探索取消油环和导油板的设计,比如博格华纳向心油冷定子,如下图,箭头代表的就是油的走向,通过铁芯端面的带角度的控制油喷向定子绕组端部。 博格华纳向心油冷定子专利 通过定子铁芯喷淋到绕组端部,这个设计需要对极进模理解比较深。并且需要对流体研究比较深,确保每个喷淋口出去的油速相当。 降本小结: 该零部件成本不低,主要是制造难度大。如果是PA67或者PPS,一套成本大概需要40rmb左右。 03# 减少铜线的用量 在扁线电机中,铜线的用量占据了相当大的成本比例。扁线电机两端高度是没有用的,如果能减少端部高度,铜重下去了,成本也下去了。 目前降低端部高度最有效的方式是降低直线段高度,目前国内大部分水平是8mm左右,如果能降到6mm甚至5mm,那么H-pin电机可以减少将尽100g铜重, I-pin降低200g。 目前大部分公司扁线定子制作采用激光焊接,这需要保证焊接的线对齐,那么就需要有切平工艺,这进一步导致用铜量增加,如果考虑用功率更大的tig焊,这一部分铜不久可以省下来了吗,这差不多有50g损耗(I-pin降低100g)。 降本小结: 目前国内漆包线加工费在15rmb/kg左右(根据漆膜厚度决定),铜价格60rmb/kg算,回收价格按照30rmb/kg算。那么这样至少可以有单台6rmb成本下降。 04# 替代涂覆粉材料 目前大高压电机和油冷电机都会去用涂环氧粉末,大部分还是用索马龙,单台用量差不多100g,I-PIN差不多200g,差不多15~30rmb左右。 暂且不说涂覆粉工艺各种问题(太脆容易开裂,与塑料尼龙附着性不好),就这价格也挺高的,如果说有一种材料能代替索马龙涂覆粉,或者干脆不涂覆(比如波绕),那么价格会降低很多。 降本小结: 随着800V电机越来越多,目前对焊接端解决方式是用环氧粉末,这其实并不少一个非常好的设计,工艺成本和材料成本都增加,考虑如何选择替代品是我们需要攻克的难题。 05# 复合纸代替纯纸 绝缘纸在扁线电机中承担两大关键角色。首先它为槽和铜线提供了绝缘保护。其次防止漆包线在插入过程中受到任何形式的损伤。 目前,新能源驱动电机主要使用Nomex纯纸作为绝缘纸,其价格大约是500元每公斤。每台电机所需的用量在80~100克之间。经过计算,每台电机的绝缘纸成本大约是32~60元。 相比纯纸,复合纸在同等厚度情况下,绝缘性能更好。大概0.22mm的纯纸与0.19的复合纸性能相当,并且成本更低。 为什么我们不选择复合纸呢? 原因是2019年出的一个标准: 《新能源汽车驱动电机绝缘结构技术要求》 这个标准对耐油实验对复合纸比较不友好,首先当时复合纸胶水普遍不耐油,做完耐油实验后,复合纸普遍出线分层的现象,其次由于0.5%的水分存在,复合纸中间的聚酰亚胺膜在高温下可能会发生水解反应。 因此当时复合纸普遍做不过耐油测试。但是随着时间发展,复合纸这个问题也得到了解决,通过胶水和聚酰亚胺膜的升级,耐油实验已经不是问题。 小结 如果将纯纸替换为复合纸,每公斤复合纸的价格大约为300元(主要取决于中间膜的种类)。 单台电机的用量可以降低到60至80克。使用复合纸可以使得每台电机的成本降低14至30元。 因此,从成本效益的角度考虑,使用复合纸代替纯纸是一个明智的选择。 06# 漆包线降本思路 在过去的圆线时代,我们通过最大外圆、裸铜尺寸、最小漆膜厚度和偏心度等参数来定义和管控漆包线的尺寸。 然而,随着扁线技术的发展,我们面临着一个新的问题:扁线的偏心度不如圆线容易控制,特别是在漆膜较薄的情况下,这导致了供应商的报废率增加。 那么,为什么我们在圆线时代需要偏心度呢?原因在于,当漆膜附着在圆线上后,其形状就不再是标准的圆形。如果我们以加漆膜后的外径作为标准,那么公差会变得很大,这显然不符合我们的精度要求。 然而,对于扁线来说,我们并不需要担心这个问题。如果我们改变对偏心度的要求,转而关注外形尺寸,那么供应商的报废率可能会降低,成本也会相应下降。 小结 根据实际需求调整标准,降低供应商的报废率是降低成本的重要方法之一。 通过灵活应对技术和标准的变化,我们可以更好地控制成本并提高生产效率。 07# 磁钢注塑材料降本思路 磁钢和铁芯工作用的是热固磁钢胶水,每次生产都需要刮胶,生产环境比较差。后来大家为了工厂清洁度慢慢考虑注塑。 目前用的比较多的材料PA66和流动性较好的电木粉。 PA66这个材料流动性不太好,不能整体注塑,只能一叠一叠注塑,这会导致NVH问题,相信很多用PA66注塑的公司会有这种困扰。加上PA66具有吸水性,因此该注塑方式并不不推荐。 电木粉这个材料属于流动性好,热固材料,也耐高温,但是缺点就是贵,而且用起来比较浪费,基本上一台毛重200g左右,费用大概20~30rmb。 有两种思路: ▶  改用机械固定方式:特斯拉不用注塑,用机械固定方式。这个说实话国内还真不敢用,首先是专利问题,其次这个变化对国内来说比较大胆,需要做好验证才可能上去。 特斯拉转子冲片机械固定 ▶  电木粉找国产材料代替,目前了解到国内华宏有一款可以替代的材料,同样性能价格能少20%。 小结 电机注塑材料一般在20rmb左右,如果采用机械固定方式则减少20rmb,用国产则降6rmb。 07# 铁芯降本思路 定子铁芯在铁损中占据主导地位,为了降低成本,我们可以考虑对定子和转子铁芯使用不同的硅钢片材料。定子铁芯选用高磁导材料,而转子铁芯则选择高强度材料。这样的组合能够在保证性能的同时实现成本优化。 然而,当前国内定子铁芯主要采用整体冲压工艺,这导致当定子和转子铁芯使用不同材料时,材料利用率显著降低。因此定转子选用不同牌号硅钢成本是会急剧升高的。 在直流电机电机领域,为了提高材料利用率,如下图所示,该定子铁芯有4段组成,这种设计能够提高定子铁芯的原材料利用率。但在车用驱动电机等领域,由于定子铁芯冲片较薄、强度有限,分段铁芯的精度问题容易导致拼接变形和翘片现象,从而影响合格率。 尽管如此,如果我们能够解决分段铁芯的精度问题,提高其合格率,那么这种成本优化方案仍然具有潜力。 小结 采用分段定子铁芯设计并将转子冲片厚度提升一个等级,成本可降低约1~2元/公斤。 以转子冲片毛重15公斤为例,就能实现15~30元的成本节约。因此,未来在解决技术难题的基础上,这种方案有望成为降低电机成本的有效途径。 08# 磁钢降本思路 思路一 磁钢也是成本大头,2022年开始稀土价格猛涨,带着磁钢价格也猛涨。虽然2023年2季度后重稀土价格开始大跳水,但是也不妨碍磁钢价格在整个电机中的占比。 在电磁方案不变情况下,磁钢要想降本就得考虑在矫顽力上面下文章。如下图所示,一般而言磁铁四角的磁感应强度是最大的,磁钢热量最集中的部位在磁钢的四个角上。 如果只是对4个角用重稀土来提高矫顽力,其他磁密较低的位置轻稀土,那么成本不就下来了嘛。 小结 同样是48UH,如果通过该方式降到48SH,磁铁成本大概能降10%,一台200KW的电机磁钢用量大概是500元左右,也就是可以节省差不多20元。 思路二 以上是针对磁钢本体的降本方案,这里聊一聊通过软件实现磁钢降本。 永磁同步电机在运行中,存在退磁风险的情况有以下两点: ▶  水冷电机长时间运行,定子温度因为有冷却温度在降额温度以下,但是未能保护转子温度,是的转子温度过高导致退磁; ▶  ASC模式下,瞬态巨大电流导致电机退磁。 以上2点都可以通过软件来规避。 针对第一点,可以通过转子温度测试,标定出如下图所示的一些参数。然后通过特点算法将转子温度与NTC温度对应起来,这样就可以时刻检测转子温度,当转子温度超温时,进入降额模式,避免退磁。 针对第二点,可以考虑控制器增加的软启动控制策略。 软启动控制策略是一种用于控制电机启动过程中电流峰值的技术。以下是ASC下软启动控制策略的几种常见方法:斜坡升压软启动,斜坡恒流软启动,阶跃启动,脉冲冲击启动。这些软启动控制策略可以根据具体的应用场景和电机特性进行选择和调整。ASC软启动控制的主要目的是在减小电机进入ASC模式后电流峰值,降低磁钢退磁风险。 小结 以上2个软件策略如果成功在控制器发挥应用,那么磁钢牌号可以在“磁钢降本思路1”的基础上进一步下降5%左右。

    03-13 130浏览
  • 汽车悬架系统详解

    悬架系统对于一辆汽车的操控性和舒适性有着巨大的影响。从结构上分类,可以简单分为独立悬架和非独立悬架2种 非独立悬架就是左右两侧通过一个整体的车架相连,虽然强度更高,但是在遇到坑洼路面时,舒适性不好,因为只要有一个车轮出现颠簸,整个车子就会跟着一起上蹿下跳 而独立悬挂的左右两侧车轮相互独立,这样就可以在遇到颠簸时,减少车身的整体冲击,舒适性大大提升 由于前轮需要负责转向,不适合安装非独立悬架,所以最常见的扭力梁式非独立悬架,都会被用来当做后悬架使用 当然也有例外,如果是硬派越野车型上的整体桥式非承载式车身,前轮也会采用桥式非独立悬架,这种特殊结构的悬架不在今天的讨论范围 非独立悬架 优缺点明显 非独立悬架结构简单、成本低,还不容易坏,所以在以前的中低端车型上非常常见,后来随着大家对于汽车舒适度的要求越来越高,很多厂家慢慢都换成了独立悬架 目前还在用扭力梁的车型并不多,但是也不少,比如奔驰A级、丰田致炫、本田飞度、别克凯越、大众桑塔纳等等,大部分都是厂家的一些入门车型,说白了就是为了拉低售价,照顾消费者的钱包 其中“头比较硬”的就是法系车,标致和雪铁龙旗下绝大部分车型的后悬架,都是非独立悬架,但是法系车最出名的就是底盘调校,虽然用的是非独立悬架,开起来甚至比独立悬架还要优秀 但是很多买车的人一看是扭力梁,立马调头就走,可能也是法系车日渐衰落的一个原因吧 独立悬架 种类繁多 接下来再说说独立悬架,一般汽车悬架主要包含3大部分:弹性部件、减振器和导向机构 前两个很好理解,主要就是为了缓冲减震。而导向机构中会有各种各样的连杆结构,主要用来把车轮和悬架有效地连接起来 可以简单地把这个连杆结构想象成人的手臂,手臂越多就抓得越稳,抓的角度越精准,就越能使上力气 连杆结构的不同,也导致出现了很多独立悬架的种类。比如说导向机构中只有1根连杆,就是麦弗逊,有2根就是双叉臂,有3根及以上,就是多连杆 小巧的麦弗逊 麦弗逊独立悬架,由于只有一根连杆,所以既是减震器,又是导向机构,压力非常的大 虽然成本最低,但是导向性也是最差的,反应到实际的驾驶中,就是舒适性和操控性一般 但是麦弗逊有一个最大的优点,就是空间占用小,非常容易放进前机舱,不会挤占太多发动机、变速箱的空间,所以很多车型都会将麦弗逊作为前悬架 运动的双叉臂 双叉臂悬架就是在麦弗逊的基础上,再增加一个V型连杆,帮助悬架系统更好抓住车轮 这样减震器就可以专心用来减震,而且还可以横向布置,这样能够大大降低车身重心,双叉臂的横向刚性更强,可以提供更好的侧向支撑,提升操控和极限过弯的能力,所以非常适合放在一些跑车上 比如说法拉利、兰博基尼这些跑车,前悬架用的就是双叉臂,最大的缺点当然就是贵 舒适的双叉臂 最后就是多连杆悬架,一般比较常见的4连杆和5连杆 前面也说了,手臂越多,就意味着抓得越稳,所以多连杆是所有悬架中结构最复杂,舒适度最好的一个,当然厂家的调校也至关重要 由于多连杆交叉复杂的结构,也会影响车辆的底盘风阻,所以一般用在中高端的家用车型上,追求极限的跑车还是会选择双叉臂 悬架再好 也需调校 随着技术的日益进步和产业化的完善,现在很多车型的悬架系统都是“前麦弗逊后多连杆” 但是它们的乘驾体验却有着很大不同,最大的原因就是调校不同 有的厂家注重舒适,所以悬架调校得比较敏感,能够过滤掉细小的震动,所以高速开起来感觉有些发飘。有的厂家注重操控,所以悬架调校偏向运动,开起来就比较“整” 也可以说,悬架本身并无好坏之分,调校才是真正的硬实力 法系车之所以敢用扭力梁,就是对自己调校水平有着绝对的自信

    03-11 98浏览
  • 浅析线控转向系统技术

    本章依然会沿着汽车转向系统的演进过程来叙述:原始转向系统、带有转向比的转向系统、机械液压转向HPS、电子液压转向EHPS、电动助力转向EPS、以及最终的纯线控转向系统。开局先放一张转向系统演进的示意图,接下来的内容都会围绕该图展开: 转向系统的演进过程 原始的机械转向系统 最原始的车辆转向系统中,方向盘连接转向柱,而转向柱再与连接两个车轮的拉杆连接(下图中甚至没有可以改变扭力输出方向的万向节)。通过该套机械结构,方向盘的转动即可传导到车轮上。实际过程中,两侧车轮的转向角度是不同的,对转向几何感兴趣的读者,可以自行搜索“阿克曼角”。 最原始的转向系统 这种转向机构既没有转向助力,更没有减速机构,方向盘转角与车轮转角相等,转向比为1:1。卡丁车由于体积有限,采用的即为上述转向系统。 而这套最原始的转向系统存在两个问题: 1.乘用车一般重量1吨以上,商用车可能重达数十吨,凭人力很难拧的动方向盘,例如很多玩过卡丁车的都表示胳膊拧方向盘十分费力。 2.采用1:1的转向比,在高速情况下,细微的转动就可能导致偏航,十分危险。 因此,一般的乘用车转向比会达到12:1到20:1左右,一般家用车打死方向至少需要转一圈半,F1赛车为了提升操控灵敏性和反馈感,转向比会在6:1左右。大转向比一方面可以限制方向盘的细微转动,提升高速巡航时稳定性,另一方面更长的行程也可以增加转向的扭矩,更加省力。 学过《机械原理》的应该知道,可以减速增扭的机构,无非就是齿轮组、齿轮纸条、蜗轮蜗杆、滚珠丝杠等机构。根据转向机构的空间特性,齿轮齿条和滚珠丝杠更为常用: 齿轮(斜)齿条转向机构,来自日本NSK 滚珠丝杠(循环球式)转向结构,来自瑞典SKF 滚珠丝杠由于将滑动摩擦转换为滚动摩擦,其传动效率更高且寿命更长。更重要的是,滚珠丝杠具有自锁的特性,即扭矩只能由转向柱传递给滚珠丝杠,反之则不行;而齿轮齿条则不会自锁,齿轮和齿条可以相互传力(此处仍然需要一定的机械原理知识)。这也就是说,当行驶在不平坦的路面上时,对于齿轮齿条机构,崎岖的路面可能引发车轮的被迫转向,进而反向传导至方向盘上;而对于滚珠丝杠机构,只要驾驶员不转动方向盘,车轮也不会因为路面形态发生任何转向。 越野场景 鉴于上述特性,滚珠丝杠转向器,也叫循环球式转向器更广泛地应用在硬派越野(如奔驰G、丰田陆巡、三菱帕杰罗等)、以及载重量更大的大客车和大货车上。而更强调操控的家用车辆则常采用齿轮齿条转向器,其结构更简单,成本更低,转向的反馈也更加灵敏(俗称“有路感”)。 即便采用了减速增扭的机械结构,转向需要的力道仍然不小,对于拉货的重型卡车就更是如此。比如前面提到的老式拖拉机,笔者小时候在田间曾看到司机师傅转动方向盘时小臂青筋鼓起,看得出来十分费力。再比如新中国成立之初生产的解放卡车,司机师傅都练就了一身好臂力。因此,和刹车系统一样,业界想到给转向系统“助力”。 而根据出现时间顺序,转向助力系统可分为:机械液压助力转向(HPS)、电动液压助力转向(EHPS),以及电动助力转向(EPS)。 老式解放卡车 机械液压转向(HPS Hydraulic Power Steering) 机械液压助力转向系统早在20世纪初就被发明,不过规模化的应用要等到二战结束。在这套系统中,转向丝杆上集成了一个可以左右移动的液压缸,由三通阀控制其移动方向。 机械液压转向系统HPS HPS具体的工作原理是:液压泵由由发动机带动,当发动机启动时,液压泵时可维持运转。而方向盘的转动会带动三通控制阀的开闭:方向盘左转时候,左边侧节流阀打开,液压油经过节流阀流向液压缸驱动车轮向左转,右转同理。方向盘不转动时候,液压油经过中间的节流阀流回储油罐。(这里需要基础的《液压传动》知识) 三通阀的类比:HPS的工作原理 可以看出,HPS会持续消耗发动机的能量,带来的是油耗的上升,并且,液压泵输出功率会随着发动机的转速而发生变化,因此其转向助力的大小并不稳定。 电子液压转向(EHPS Electro-Hydraulic Power Steering) 电子液压转向EHPS的工作机理类似于前面提到的电子液压制动EHB,其将液压泵的动力源由发动机替换为了电动机,并且引入了扭矩传感器和ECU来替代由机械控制的液压阀。扭矩传感器检测到方向盘的传来的扭力,ECU收到传感器的信号后,控制液压阀的开闭和电动机的启动,即可完成助力转向。 电子液压转向EHPS架构 相比HPS,EHPS中电动机无需时刻工作,对发动机动力的削弱少很多;并且电动机的输出功率更加平稳。液压系统能够输出的力道非常大,因此更多应用在商用车和重型卡车领域。 电动助力转向(EPS Electric Power Steering) 电动助力转向EPS的原理则有点类似前面提到的电子机械制动EMB。扭矩传感器检测到方向盘传来扭矩数据后,将其传递给ECU,ECU根据一定的算法逻辑,控制电动机输出扭矩,经过齿轮机构减速后作用于转向柱上,完成转向助力。 当然,电机和减速器可以有不同的布置,其动力可以驱动转向柱,也可以直接驱动转向丝杆,这都不影响我们对其原理的理解。 电动助力转向,From 瑞典NSK 相较于EMB的难产,EPS的普及更为迅速,目前几乎所有新量产的乘用车都采用了电动助力转向。其中一个重要原因就是:转向系统的需要的输出功率相对刹车系统较小,电机更容易带动,一般乘用车的转向电机功率在300~800W之间。 ● EPS的优点有: 直接省去了液压系统,大幅简化了转向系统,提升了可靠性,降低了成本; 电机+齿轮可实现对转向角度的精确控制,实现了对转向的线控; 人力输入的机械连接并没有被切断,当电动助力失效时候,仍然可以通过人力来控制车辆,提供安全备份。 ● 随速转向系统: 有过驾驶经验的读者应该知道,在低速状态下,方向盘一般十分轻便,而高速状态下方向盘则较为沉重,不易转动。这就引出了“随速转向系统”。如果在高速情况下,转向助力维持低速的状态,那么轻轻拨动方向盘就可能造成很大的转向动作,进而造成严重的事故。 因此,转向助力应当随着速度的增加而减少,这个减小可以是线性的也可以是非线性的,都可以通过ECU程序来进行标定。我们在车评节目中经常会听到“转向随速增益”这个词来形容方向盘的手感,就是这个意思。 线控转向 在电动助力转向的基础上,进一步把转向柱也去掉。采用一个转向模拟器来收集方向盘的转动角度,并给驾驶者提供一定的转向阻尼。ECU根据转角信息,驱动电机完成转向动作。 线控转向与电子助力转向的对比,来自Lexus ● 这种更为彻底的线控转向的优点有: 去掉转向柱使得转向机构的布置更为灵活; 由于方向盘与执行机构不存在机械连接,因此可以利用程序实现不同的转向比,甚至实现非线性的转向比,以实现个性化的驾驶需求(例如,在转向角较大时可适当降低转向比,使得低速状态下能够更轻松地掉头); 通过与方向盘相连的转向模拟器,可以更自由地调节转向阻尼,实现个性化的转向手感; 前面提到“高速行驶下大幅度转向会导致翻车”,而采用线控转向,系统可以抑制人类的可能导致车辆失控的操作。 ●线控转向地缺点是: 如同EMB缺少可靠的备份,线控转向取消了方向盘输入与转向输出之间的机械连接,一旦线控系统失效,则无法通过人工补救。因此需要额外设计转向备份系统。 笔者个人的看法是:现阶段并不一定要采用完全的线控转向。首先,EPS通过电机已经足够实现ADAS/AD系统对转向的精确控制,取消转向柱并不会在这一点上有多大提升。而取消机械连接带来的风险却是实打实的。当然,如果在未来L5级自动驾驶实现后,车辆已经完全不需要方向盘,那个时候自然可以采用纯粹的线控转向了。

    03-06 177浏览
  • 2025年半导体预测是怎样的?

    2024 年,半导体行业表现强劲,预计实现两位数 (19%) 增长,全年销售额达 6270 亿美元。这甚至好于早先预测的 6110 亿美元。2025年的表现可能会更好,预计销售额将达到 6970 亿美元,创下历史新高,并有望实现到 2030 年芯片销售额达到 1 万亿美元的广泛接受的目标。这意味着,该行业在 2025 年至 2030 年期间仅需以 7.5% 的复合年增长率增长(图 1)。假设该行业继续以这样的速度增长,到 2040 年就可能达到 2 万亿美元。 股市往往是行业表现的领先指标:截至 2024 年 12 月中旬,全球十大芯片公司的总市值为 6.5 万亿美元,较 2023 年 12 月中旬的 3.4 万亿美元增长 93%,比 2022 年 11 月中旬的 1.9 万亿美元高出 235%。话虽如此,值得注意的是,过去两年芯片股的“平均”表现一直是“两个市场的故事”:参与生成式人工智能芯片市场的公司表现优于平均水平,而没有这种风险的公司(例如汽车、计算机、智能手机和通信半导体公司)表现不佳。 推动行业销售的一个因素是对新一代人工智能芯片的需求:包括 CPU、GPU、数据中心通信芯片、内存、电源芯片等。德勤的《2024 年 TMT 预测》报告预测,这些新一代人工智能芯片的总价值将“超过”500 亿美元,这是一个过于保守的预测,因为到 2024 年,市场价值可能超过 1250 亿美元,占当年芯片总销售额的 20% 以上。在本文发表时,我们预测到 2025 年,新一代人工智能芯片的价值将超过 1500 亿美元。此外,AMD 首席执行官 Lisa Su 将她对人工智能加速器芯片总潜在市场的估计上调至 2028 年的 5000 亿美元,这一数字高于 2023 年整个芯片行业的销售额。 在终端市场方面,个人电脑销量在 2023 年和 2024 年持平于 2.62 亿台后,预计 2025 年将增长 4% 以上,达到约 2.73 亿台。与此同时,智能手机销量预计将在 2025 年(及以后)以低个位数增长,到 2024 年达到 12.4 亿台(同比增长 6.2%)。这两个终端市场对半导体行业至关重要:2023 年,通信和计算机芯片销售额(包括数据中心芯片)占当年半导体总销售额的 57%,而汽车和工业(仅占总销售额的 31%)则占比更高。 该行业面临的一个挑战是,虽然新一代人工智能芯片和相关收入(内存、先进封装、通信等)带来了巨额收入和利润,但它们只代表了少数高价值芯片,这意味着整个行业的晶圆产能(以及利用率)并不像看起来那么高。2023 年,芯片销量接近 1 万亿,平均售价为每片 0.61 美元。粗略估计,虽然新一代人工智能芯片可能占 2024 年收入的 20%,但它们在晶圆总产量中所占比例还不到 0.2%。尽管预计 2024 年全球芯片收入将增长 19%,但全年硅晶圆出货量实际上预计下降2.4%。预计到 2025 年,这一数字将增长近 10%,这得益于对新一代 AI 芯片中大量使用的组件和技术(如小芯片)的需求,正如我们在 2025 年 TMT 预测报告中提到的那样。当然,硅晶圆并不是唯一需要追踪的产能:先进封装的增长速度更快。例如,一些分析师估计,台积电的 CoWoS(基板上晶圆上的芯片)2.5D 先进封装产能将在 2024 年达到每月 35,000 片晶圆(wpm),并可能增加到 70,000 wpm(同比增长 100%),到 2026 年底将进一步同比增长 30% 至 90,000 wpm。 此外,推动行业创新并不便宜。2015 年,芯片行业整体研发支出占息税前利润 (EBIT) 的平均水平为 45%,但到 2024 年,这一比例预计将达到 52%。研发支出的复合年增长率似乎为 12%,而白色 EBIT 的增长率仅为 10%(图 2)。 最后,值得提醒读者的是,芯片行业是出了名的周期性行业。在过去 34 年中,该行业曾 9 次从增长转为萎缩(图 3)。因此,与 1990 年至 2010 年相比,过去 14 年该行业的极端增长或萎缩似乎有所减少,但萎缩的频率似乎有所增加。目前看来,2025 年前景看好,很难预测 2026 年会带来什么。 这些趋势和其他趋势都影响着我们对 2025 年半导体行业的展望,我们将深入探讨未来一年的四大主题:用于个人电脑和智能手机以及企业边缘的生成式 AI 加速器芯片;芯片设计的新“左移”方法;日益严重的全球人才短缺;以及在不断升级的地缘政治紧张局势中建立有弹性的供应链的必要性。 1 个人电脑、智能手机、企业边缘和物联网中的生成式 AI 芯片 用于训练和推理新一代人工智能的许多芯片价格高达数万美元,用于大型云数据中心。2024 年和 2025 年,这些芯片或这些芯片的轻量级版本也将在企业边缘、计算机、智能手机以及(随着时间的推移)其他边缘设备(如物联网应用)中找到归属。需要明确的是,在许多情况下,这些芯片要么用于新一代人工智能,要么用于传统人工智能(机器学习),或者两者的结合(这种情况越来越多)。 企业边缘市场在 2024 年就已成为一个因素,但 2025 年的问题将是这些芯片的更小、更便宜、功能更弱的版本如何成为计算机和智能手机的关键部件。它们在单芯片价值上的不足可以通过数量来弥补:预计 2025 年个人电脑销量将超过 2.6 亿台,而智能手机销量预计将超过 12.4 亿台。有时,“新一代人工智能芯片”可以是一块独立的硅片,但更常见的是,它是几平方毫米的专用人工智能处理空间,是更大芯片的一小部分。 企业边缘:尽管通过云端实现人工智能可能仍将是许多企业的主导选择,但预计全球约有一半的企业将在本地增加人工智能数据中心基础设施——这是企业边缘计算的一个例子。这可能部分是为了帮助保护他们的知识产权和敏感数据,并遵守数据主权或其他法规,同时也是为了帮助他们节省资金。这些芯片与超大规模数据中心的芯片大致相同,服务器机架的成本高达数百万美元,需要数百千瓦的电力。虽然比超大规模芯片的需求要小,但我们估计,到 2025 年,全球企业边缘服务器芯片的价值可能达到数百亿美元。 个人电脑:预计到 2025 年,搭载人工智能的 PC 销量将占到所有 PC 的一半,一些预测表明,到 2028 年,几乎所有 PC 都将至少配备一些板载人工智能处理,也称为神经处理单元 (NPU)(图 4)。这些搭载 NPU 的机器预计价格将高出 10% 至 15%,但需要注意的是,并非所有人工智能 PC 都一样。根据主要 PC 生态系统公司的建议,只有每秒运算速度超过 40 TOPS 的计算机才被视为真正的人工智能 PC,40 TOPS(每秒万亿次运算)级别是一条分界线。截至撰写本文时,一些买家对这些新 PC 持谨慎态度,要么不愿意支付溢价,要么等到 2025 年下半年推出更强大的人工智能 NPU。 截至 2024 年 12 月,许多已安装的 PC 都运行在 x86 CPU 上,其余则运行在基于 Arm 架构的 CPU 上。联发科、微软和高通于 2024 年宣布,他们将生产基于 Arm 的 PC,特别是新一代 AI PC。目前尚不清楚这些机器在未来 12 个月内会取得多大成功,但这很可能是各家芯片制造商面临的一个关键问题,高通预计到 2029 年,其每年将销售价值 40 亿美元的 PC 芯片。 智能手机:PC NPU 的价值可能高达数十美元,而与智能手机相当的新一代 AI 芯片的价值可能要低得多,我们估计下一代智能手机处理器的硅片价格不到 1 美元。尽管智能手机市场每年的销量超过 10 亿部,尽管我们预测到 2025 年新一代 AI 智能手机将占手机销量的 30%,但以美元计算,半导体的影响可能小于 PC。相反,对于芯片制造商来说,一个有趣的角度可能是看看消费者是否对新一代 AI 手机和功能足够兴奋,以缩短更换周期。消费者在升级之前会保留手机更长时间,而且多年来销量一直持平。如果新一代 AI 热情导致智能手机销量上升,那么它可能会使所有类型的芯片公司受益,而不仅仅是那些自己生产新一代 AI 芯片的公司。 物联网:数据中心的新一代人工智能芯片可能要花费 30,000 美元。个人电脑上的新一代人工智能芯片可能要花费 30 美元。智能手机上的新一代人工智能芯片可能要花费 3 美元。对于在低成本物联网市场中发挥作用的新一代人工智能芯片,它们的成本应该在 0.3 美元左右。这不太可能在短期内发生,但由于数百亿个物联网终端可能需要人工智能处理器,因此这是一个值得长期关注的市场。 需要考虑的战略问题: 尽管目前数据中心的新一代人工智能芯片需求旺盛,但考虑到其对行业增长的重要性,是否有迹象表明需求正在减弱,或者处理正在从数据中心转移到边缘设备? 鉴于人工智能芯片在数据中心的成功,各种边缘芯片的市场潜力可能会推动并购,并吸引更多私募股权、风险投资和主权财富基金的兴趣:芯片公司已经与金融参与者结盟。我们能在 2025 年看到更多这样的情况吗? 一些分析师预计,到 2025 年及以后,人工智能推理市场的增长速度将超过训练市场:这会对各个半导体行业和参与者产生什么影响?随着人工智能推理成本的快速下降,它将如何影响半导体芯片? 随着人们更加关注可持续性,以及由于人工智能推动的电力需求激增而导致的电力消耗压力不断加大,行业如何在笔记本电脑、手机和物联网设备等小型设备中取得电源效率和性能之间的平衡? 2 芯片设计“左移”,呼吁整个行业加强合作 德勤预测,到 2023 年,人工智能将成为人类半导体工程师的强大助手,帮助他们完成极其复杂的芯片设计流程,并使他们能够找到改进和优化 PPA(功率、性能和面积)的方法。截至 2024 年,新一代人工智能已实现快速迭代,以增强现有设计并发现可以在更短时间内完成的全新设计。2025年,可能会更加重视“左移”——一种芯片设计和开发方法,其中测试、验证和确认在芯片设计和开发过程的早期被提前——因为优化策略可以从简单的 PPA 指标发展到系统级指标,例如每瓦性能、每瓦 FLOP(或“每秒浮点运算”)和热因素。而先进的人工智能功能(图形神经网络和强化学习)的结合可能会继续帮助设计比人类工程师生产的典型芯片更节能的芯片。 领域专用芯片和专业芯片预计将继续比通用芯片占据主导地位,因为多个行业(例如汽车)和某些 AI 工作负载需要定制的芯片设计方法。然而,专用集成电路的广泛采用仍不太明朗,因为此类硬件的开发和维护成本高昂,可能会分散对其他 AI 进步的关注。但这正是新一代 AI 工具可以让公司设计出更专业、更有竞争力的产品(包括定制硅片)的地方。 3D IC 和异构架构带来了与排列、组装、验证和测试各种芯片相关的挑战,这些芯片有时可以预先组装。这种从单个产品设计转向系统设计的转变可以在早期融入软件和数字孪生——强调了早期和频繁测试的重要性。到2025 年,在流程上游同步硬件、系统和软件开发可能会有助于重新定义未来的系统工程,并提高整体效率、质量和上市时间。 为了发展并跟上设计面貌的变化,业界可能需要考虑处理复杂设计流程的新方法。芯片行业已经在探索数字孪生,以逐步模拟和可视化复杂的设计流程,包括移动或交换芯片以测量和评估多芯片系统性能的能力。数字孪生可以越来越多地用于提供物理终端设备或系统的视觉表示(通过 3D 建模),以协助设计的各个方面,包括机械和电气(软件和硬件)。设计师应该与电子设计自动化 (EDA) 和其他高科技计算机辅助设计/计算机辅助工程公司合作,以加强混合和复杂异构系统的设计、仿真、验证和确认工具和能力。他们还应该考虑使用和调整基于模型的系统工程工具,作为更广泛的 EDA“左移”方法的一部分。 由于设计和软件有望在下一代先进芯片产品的开发中发挥关键作用,因此在 2025 年,加强网络防御将变得更加重要。为了与左移方法保持一致,芯片设计人员应在芯片设计过程的早期集成安全性和安全测试。他们应该实施冗余和错误纠正和检测机制,以帮助确保系统即使某些组件发生故障也能继续运行,以及基于硬件的安全功能,例如安全启动机制和加密引擎。 需要考虑的战略问题: 随着芯片设计中的人工智能变得越来越普遍和普遍,并且 EDA 越来越多地支持人工智能,行业如何才能通过始终让人类工程师参与其中并让他们在整个过程中发挥重要作用,主动确保复杂设计过程中的信任和透明度? 在定制硅片设计的情况下,设备原始设备制造商、产品设计师和芯片设计师之间的关系性质是什么?芯片公司和最终客户之间的一些差异化因素是什么?增加定制化是否会在产品定价方面带来规模优势,或者降低生产原型的成本或加速原型生产? 新的工具和方法可能需要更广泛的芯片行业(包括 EDA 和设计公司)考虑长期方向和目标。在此背景下,半导体公司应该从系统工程和芯片开发/研发的角度解决哪些方面的问题? 对更快速、更复杂芯片的设计以及更快的速度不断增长的需求将如何影响制造能力和产能,特别是对于后端参与者(先进封装代工厂和外包半导体组装和测试)? 3 半导体行业人才挑战加剧 在德勤 2023 年半导体行业展望中,我们估计该行业到 2030 年需要增加 100 万名技术工人,即每年增加 10 万名以上。两年后,这一预测不仅成真,而且人才挑战预计将在 2025 年进一步加剧。从全球来看,各国都无法培养足够的技术人才来满足其劳动力需求。 从核心工程到芯片设计和制造、运营和维护,人工智能可能有助于缓解一些工程人才短缺问题,但技能差距依然存在(图 5)。到2025 年,吸引和留住人才可能仍将是许多组织面临的挑战,而问题很大一部分是劳动力老龄化,这在美国甚至欧洲更为突出。再加上复杂的地缘政治格局和供应链脆弱性,很明显,全球人才供应都面临压力。 随着美国和欧洲制造、组装和测试的回流,芯片公司和代工厂在 2025 年可能会面临压力,因为它们需要在当地寻找更多人才。例如,人才挑战是新工厂开业延迟的原因之一。与此相关的是,“友岸化”(与被视为盟友的国家或地区的公司合作)可以为供应链提供稳定性和弹性,尤其是对美国和欧盟而言。但它也要求在马来西亚、印度、日本和波兰等目的地寻找合适的技能,以帮助满足新的产能需求和人才角色。 芯片公司不能继续争夺同样有限的人才资源,同时还期望跟上行业技术进步和产能扩张的步伐。那么,半导体公司在 2025 年可以做些什么来解决人才难题呢? 为了吸引人工智能和芯片人才,芯片公司应该考虑提供一种信任感、稳定性和预期的市场增长。这样,他们可以帮助让该行业对高中毕业生和新进入者更具吸引力,从而帮助重振人才渠道。 希望从各自国内芯片法案中获益的国家应考虑将战略目标和与劳动力发展和激活相关的方面纳入其中。一些例子可能包括培训计划、扩大职业和专业教育以及当地芯片公司为获得资金而承诺提供的就业机会。半导体公司应考虑与教育机构(高中、技术学院和大学)和当地政府组织合作,利用芯片资金开发和策划符合该地区特定行业需求的有针对性的劳动力培训和发展计划。 半导体公司应设计灵活的技能提升和再培训计划,以实现职业道路的灵活性,帮助解决未来劳动力技能和差距问题。此外,他们还应实施和利用先进的技术和基于人工智能的工具来评估各种人才相关因素,例如供应、需求以及当前和预计的支出,以执行复杂的劳动力情景建模,以支持战略人才决策。 需要考虑的战略问题: 如何根据专业领域(例如设计和知识产权、制造、操作员、工程和技术角色)对劳动力进行描述和细分?行业如何根据这些角色以及招聘的特定地理区域定制人才采购和技能发展战略? 一个新兴趋势是代理人工智能:多模式、多代理人工智能能否部分解决迫在眉睫的人才短缺问题? 在将新人才融入主流劳动力队伍时,应考虑哪些细微差别和因素以确保企业文化的一致性?应解决与人才保留问题和人才管道发展差距相关的哪些风险和陷阱? 作为未来人才管道开发的一部分,应该考虑哪些相邻的技术劳动力类型,以及整体人才组合应该是什么样子,包括全职和零工,以帮助公司在未来一到两年内占据强势地位? 4 在地缘政治紧张局势中构建有弹性的供应链 德勤的 2024 年半导体展望已经深入讨论了地缘政治紧张局势,那么 2025 年又有哪些新情况呢? 一样……但更多。例如,2024 年 12 月,刚离任的政府发布了一份新的美国出口限制清单,主要仍集中在先进节点上(尽管有人猜测限制可能会扩大到包括一些相对不太先进的节点)。这些限制现在包括围绕先进检测和计量的单独附加类别。此外,许多(超过 100 个)新实体(主要是中国)已被添加到受限实体列表中。 作为这些限制措施的一部分,美国似乎正在采取“小院子、高围栏”的半导体出口限制方式。其目的是对相对较小的芯片技术子集施加高水平的限制,重点是国防技术,包括先进武器系统和军事应用中使用的先进人工智能。 新的限制措施(如果由新政府实施)进一步表明,人工智能的发展越来越被视为国家安全问题。在这些新限制措施出台的第二天,中国宣布进一步限制镓和锗(以及其他材料)的出口,这两种材料都是制造多种半导体的关键。正如我们在 2024 年预测的那样,持续的材料限制可能会对芯片行业构成挑战,但也是该行业加大电子垃圾回收力度的当务之急。 2025 年 1 月中旬,已离任的政府宣布了《人工智能技术扩散临时最终规则》。《临时最终规则》将对芯片出口实施新的管制。 在撰写本文时,尚不清楚新一届政府是否会取消 12 月和 1 月的限制措施、进行修改,甚至提出额外的限制措施。 此外,新政府还提议增加关税,包括对来自中国、墨西哥和加拿大的商品征收关税。69鉴于大多数半导体供应链的全球性,即将离任的政府提出的新的人工智能相关芯片出口管制以及计划中的更高关税可能会产生影响,并可能使供应链的管理变得更加复杂,从而转移利润、成本等。而且这种影响可能会影响整个供应链(包括研发和制造),并影响各个国家和地区的行业政策的制定方式。 当然,还有其他地缘政治风险或变化:乌克兰/俄罗斯和中东的冲突仍在继续,可能会影响半导体制造、供应链和关键原材料。但芯片行业还有其他薄弱环节:韩国 12 月的戒严令凸显了全球供应链对某些类型半导体的依赖和集中,尤其是在最先进的技术领域。作为集中度的一个例子,全球近 75% 的 DRAM 内存芯片都是在韩国制造的。 不仅仅是地缘政治因素会中断关键材料供应:2024 年的飓风海伦 (Hurricane Helene) 曾短暂关闭北卡罗来纳州的两座矿山,这两座矿山是全球几乎所有超高纯度石英的产地,而石英对于制造芯片制造过程中的关键部件——坩埚至关重要。由于气候变化,飓风、台风和其他极端天气事件预计将变得更加频繁和猛烈,扩大关键材料来源可能仍是供应链的首要任务。 值得注意的是,截至 2024 年底,美国及其盟友的出口限制措施中一个关键部分正在产生影响:对极紫外光刻机的限制似乎构成了一道障碍,阻止中国公司大规模生产先进节点芯片并获得可接受的产量。虽然使用较旧的深紫外技术制造了数量有限的先进工艺芯片,但良率很低,不经济,这种情况预计至少会持续到 2026 年。 需要明确的是,即使行业增长了近 20%,半导体供应链在 2024 年仍然运转良好。目前,没有理由相信 2025 年的供应链会缺乏弹性,但风险始终存在。考虑到人工智能芯片在 2025 年及以后的重要性(高达销售额的 50%,也许是75%),以及尖端芯片所需的处理器、内存和封装的相对更高集中度,该行业可能比以往任何时候都更容易受到供应链中断的影响。尽管由于各种芯片法案,该行业在地理上的集中度可能会降低——在岸外包、回岸外包、近岸外包和友岸外包等举措都还处于早期阶段——但至少在未来一两年内,该行业仍然非常脆弱。 需要考虑的战略问题: 鉴于不断变化的地缘政治环境和不断升级的出口限制,回流与离岸外包应该如何搭配?行业应如何考虑对曾经友好国家和盟友的现有供应链渠道合作伙伴关系(即友邦外包)的潜在破坏? 由于不可预测的气候变化影响材料和零部件供应,再加上本已复杂的地缘政治格局,这一因素将如何影响全球数十个国家正在雄心勃勃规划和推广的前端晶圆厂和后端封装测试厂? 如果贸易战继续升级,对人才的获取和供应意味着什么?出口限制是否会进一步扩大,并最终导致芯片竞赛中各国面临更广泛的人才流动挑战? 鉴于有将生产活动转移到美国的动机,拥有芯片制造能力的国家将如何应对美国可能征收的额外关税?考虑到更高的成本,高附加值的生产活动是否是转移到美国的理想选择?美国公司是否会重新考虑其离岸制造投资和活动? 5 未来的路标 展望2025年,半导体行业高管应留意以下迹象: 目前,人工智能在半导体方面的高额支出与企业能够将其人工智能产品货币化之间存在着不匹配的情况。对于 2025 年,“投资不足的风险大于投资过度的风险”这一论点似乎仍占主导地位,但如果这种态度发生转变,对人工智能芯片的需求可能会变得比预期的要弱。 来自敏捷芯片初创公司的竞争可能会加剧,对整个半导体行业的现有企业构成挑战。值得注意的是,人工智能芯片初创公司在 2024 年第二、第三和最后一个季度在全球范围内获得了累计 76 亿美元的风险投资,其中几家初创公司提供专业解决方案,包括可定制的基于 RISC-V 的应用程序、芯片、LLM 推理芯片、光子集成电路、芯片设计和芯片设备。 由于美国和其他主要市场的利率可能会进一步下降,有利的信贷环境可能会成为芯片行业并购的顺风,而该行业的并购在 2024 年已经出现上升趋势。此外,随着两个不同的芯片市场的发展(一个是人工智能芯片市场,另一个是所有其他类型芯片市场),该行业可能会经历并购和整合,尤其是当拥有宝贵知识产权的公司落后于同行并被视为有吸引力的目标时。尽管如此,全球范围内可能出现的更严格的监管和贸易冲突可能会抑制交易环境。 随着地缘政治挑战席卷全球,芯片公司应该做好应对进一步中断的准备。即使回流、友好外包和近岸外包势头强劲,传统的渠道合作伙伴模式和联盟关系也可能被颠覆。长期的地区冲突和战争可能会进一步影响重要材料和库存的流动。所有这些都可能扰乱半导体公司的需求计划,要求它们更加灵活,调整供应链和采购合同以及定价条款。 资本支出和收入的很大一部分是由人工智能和生产这些高度先进的人工智能芯片所需的先进晶圆推动的。然而,汽车、工业和消费领域的晶圆需求仍然低迷,而手机和其他消费产品的需求有所上升。到 2025 年和 2026 年,虽然总体收入和资本支出似乎继续呈上升趋势(至少在未来 9 到 12 个月内),但人工智能相关支出的任何下降趋势和零部件短缺都可能对更广泛的全球半导体和电子供应链产生不利影响。

    02-07 508浏览
  • 全面细致!新能源汽车动力电池图文详解

    “ 动力电池是电动汽车的能量来源,主要由电池单体、电池模块、电池单元、CSC 采集系统、控制单元、电池高压分配单元和冷却系统等组成。 这份资料犹如一把钥匙,开启深入了解动力电池奥秘的大门。它细致入微地展示了动力电池复杂而精妙的结构,从关键的电池单体,其正负极、隔膜与电解液协同作用,到由多个单体组合而成的电池模块与单元,再到保障电池稳定运行的 CSC 采集系统、控制单元、高压分配单元以及冷却系统等,无一遗漏。” 本文来源:汽车维修技术与知识

    02-07 363浏览
  • PPT详解:纯电动汽车整车控制策略

    本文来源:汽车电子学堂

    02-07 234浏览
正在努力加载更多...
广告