1. 汽车刚启动不要开启暖风 汽车刚启动时,发动机刚刚开始工作,水箱的温度比较低。如果开启暖风,会造成温度非正常上升,影响汽车空调的性能。 机油需要一定的时间才能润滑到各个部件,如果润滑不够直接开启暖风,...
每辆汽车需要的芯片数量都不一样, 少则可能会有几十到上百个,多则可能会有上千甚至是几千个。随着汽车智能化的发展,芯片种类也从40种上升至150多种。 汽车芯片就像人类的大脑,按功能可以分为计算、感知、执行、通信、存储与能源供应五大类。再细分点,可以分为控制芯片、计算芯片、传感芯片、通信芯片、存储芯片、安全芯片、功率芯片、驱动芯片、电源管理芯片九大类。 汽车芯片九大类 1.控制芯片:MCU、SOC 认识汽车电子的第一步, 必须先了解的就是电子控制单元(Electronic Control Unit, ECU)。 一个ECU可以说就是一台嵌入式计算机,用来控制汽车的各大系统。其中车载MCU就可以称得上是汽车ECU的运算大脑,负责各种信息的运算处理。 根据德邦证券的数据,通常汽车中- -个ECU负责-个单独的功能,配备- -颗MCU,如恩智浦的S12P MCU在一-个点火控制的ECU中;也会出现一个ECU配备两颗MCU的情况,如博世MG 7.9.8 ECU。一辆汽车中所使用的半导体器件数量中,MCU占比约30%,每辆车至少需要70颗以上的MCU芯片。 2.计算芯片:CPU、GPU CPU通常为SoC芯片上的控制中心。其优点在于调度、管理、协调能力强。但CPU的计算单元较少,无法满足大量并行的简单运算任务。因此,自动骂驶SoC芯片上通常需要集成除CPU之外的一个或多个XPU来完成AI运算。 去年的9月20日,英伟达推出了Thor芯片,这是一-块拥有770亿颗晶体管的车载中央计算芯片,算力达到了2000TOP.(这里的TOPS是计算机的算力单位,1TOPS代表处理器每秒钟可进行一万亿次(10^12]操作。) 3. 功率芯片:IGBT、碳化硅、功率MOSFET 功率半导体是电子装置中电能转换与电路控制的核心,主要用于改变电子装置中电压和频率、直流交流转换等。 以功率MOSFET为例,据数据显示,在传统燃油汽车中,中低压MOSFET单车用量约100个。而在新能源汽车中,中高压MOSFET单车平均用量提升至200个以上。未来中高端车型中MOSFET单车用量将有望增至400个。 4. 通信芯片:蜂窝、WLAN、LIN、直连V2X、UWB、CAN、卫星定位、NFC、蓝牙、ETC、以太网等等 通信芯片可分为有线通信和无线通信。 有线通信,主要用于车内设备之间的各种数据传输。无线通信,可以实现车与车互连,车与人、车与设备、车与周边环境互连等。 其中can收发器数量较大,据行业数据显示,平均一辆汽车应用的CAN/LIN收发器至少在70-80颗,一些性能车可达100多颗,甚至超过20颗。 5. 存储芯片:DRAM、NOR FLASH、EEPROM、SRAM、NAND FLASH 汽车的存储芯片,主要用于存储汽车各种程序和数据。 据海力士对智能驾驶汽车的DRAM需求量的判断,一辆车预估DRAM/NAND Flash需求最高分别可达151GB/2TB, 车内显示类、ADAS自 动驾驶系统对存储芯片使用量最大。 6. 电源/模拟芯片:SBC、模拟前端、DC/DC、数字隔离、DC/AC 模拟芯片是连接物理现实世界和数字世界的桥梁,主要是指由电阻、电容、晶体管等组成的模拟电路集成在一起用来处理连续函数形式模拟信号(如声音、光线、温度等)的集成电路。 据Oppenheimer统计,模拟电路在汽车芯片中占比29%,其中53%为信号链芯片,47%为电源管理芯片。 7. 驱动芯片:高边驱动、低边驱动、LED/显示、门级驱动、桥接、其他驱动等 在汽车电子系统中,负载的驱动有两种基本方法:低边驱动和高边驱动。 高边驱动通常用于座椅、照明和风扇等。 底边驱动用于电机、加热器等。以Tesla Model3为例,仅前车身域控制器就配置了21颗高边驱动芯片,整车用量超过35颗。 8. 传感芯片:超声波、图像、语音、激光、惯导、毫米波、指纹、红外、电压、温度、电流、湿度、位置、压力 汽车传感器可分为车身传感器和环境感知传感器。 在汽车运行中,汽车传感器能采集车身状态(如温度、压力、位置、转速等)和环境信息,并将采集到的信息转换为电信号传输至汽车的中央控制单元。根据数据显示,智能驾驶L 2级别的汽车预计会携带6个传感器,L5级别的汽车预计会携带32个传感器。 9.安全芯片:T-Box/V2X安全芯片、eSIM/eSAM安全芯片 汽车安全芯片是一种内部集成了密码算法并具备物理防攻击设计的集成电路。 如今,随着汽车逐渐向智能化发展,汽车中的电子设备数量也将不可避免地增加,与之带动的就是芯片数量的增长。 根据中国汽车工业协会提供的数据显示,传统燃油车所需汽车芯片数量为600-700颗,电动车所需的汽车芯片数量将提升至1600颗/辆,而更高级的智能汽车对芯片的需求量将有望提升至3000颗/辆。
现在的家用车变速箱大概分为5种,使用的已经很普遍了,但是他们之间有什么区别,恐怕能说明白的人不多,那么我来谈谈自己的一些看法。(先看图,解说在图下面) 1)mt 手动挡变速器(离合器和换挡杆),最基本也是最有效的换挡方式。 优点:结构简单,传动效率高,可操纵性高。 缺点:刚入门时有难度,操作水平不高时,有顿挫感,市内左脚脚太累。 经典之作---大众MQ250,作为国内能见到的最完美的手动变速箱,广泛使用在大众及其旗下各品牌中高低档车辆上,口碑非常好。 2)amt 带有自动离合器和自动换挡装置的手动变速箱(置于变速箱上的液压装置根据电脑命令或换挡杆的命令操作离合器和拨叉进行换挡工作)相当于给司机装一个机器左脚和机器右手。 优点:具有手动挡变速箱的传动效率和自动挡的简易操作。 缺点:换挡会有很明显顿挫感。 举例:北斗星,奇瑞,fiat BRAVO,载重卡车等。 3)at 自动变速器。使用液力耦合器替代传统接触式离合器的变速箱,由液压机构完成换挡动作。 优点:操作简单,可以适应于大多数的发动机形式(横置和纵置)和驱动形式(前驱,后驱,4驱,全时)。 缺点:因为采用液力耦合器,所以传动效率极低。液力耦合器原理,液力耦合器是非接触性的传动方式,通俗讲来,就像是两台面对面摆的风扇,打开其中一台对着另一台吹,另一台的叶轮也会跟着转。 车型:几乎涵盖各个品牌的大部分车型。使用范围接近手动挡,非常广泛。 cvt的打滑问题导致马力输出效率不高。 audi cvt 的传动链条 4)cvt无级变速器。 由液压装置控制锥形皮带轮调整传动比来达到换“挡”目的的变速箱(cvt的档位是虚拟出来的,所以商家说的6,7,8挡都是忽悠,他说100挡也是可能的。 优点:无缝隙不间断传动,很平顺的体验,没有一丝换挡的抖动,自身体积小,很高的经济性。 缺点:采用皮带轮与钢带传动打滑是不可避免的,完成不了大扭矩,大马力的输出,太过于温柔,如果没有电脑保护着,可能一脚油门,变速箱就废了。所以很多车在长时间行驶后变速箱过热cvt就杯具了。 EVO 用的 tc-sst pdk 1940年的雪铁龙双离合设计图 5)direct shift gearbox直接换挡变速箱(双离合器变速箱),拥有两片传统的离合器分别控制135R,246挡,可达到不间断工作,有点像接力赛跑的接棒过程,接棒的选手先启动以减少他和递棒选手的速度差。在一档换二档时,连接二档的离合器与发动机的主输出轴连接后,一档的离合器才断开,虽然达不到CVT的平顺性和经济性,但可以媲美mt的极高的传动效率,使dsg达到了一个更高的平衡点。 优点:传输不间断,经济性高,舒适性和运动型兼备所以大多装备于高端运动型车上. 缺点:新技术(其实也不算新了,上面那张设计图出自1940年),稳定性有待考证,造价成本太高,尚无法普及。 适用范围:dsg(vw),powershift(Volvo),pdk(porsche),tc-sst(Mitsubishi), m-dct(BMW) ,s-tronic(Audi) 自动变速箱(Automatic Transmission,简称:AT) 自动变速箱的英文名称为Automatic Transmission,而这也是它AT的由来。一个自动变速箱是由液力变矩器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速和变矩。而在它们里面最为重要的部件就是液力变矩器,它又由泵轮、涡轮和导轮等部件构成,兼顾着传递扭矩和离合的作用。 位于液力耦合器中的泵轮和涡轮是液力变矩器乃至整个自动变速箱中最为重要的两个部件,说的通俗一点,这两个轮就好比两个电扇,其中一台电扇主动吹风,而另一台电扇则是被动受力,它的转动是通过那台主动吹风的电扇来带动。再在泵轮和涡轮之间加上导轮,通过反作用力使泵轮和涡轮之间实现转速差就可以实现变速变矩了。 但由于液力变矩器自动变速变矩范围不够大,因此在涡轮后面再串联几排行星齿轮提高效率,液压操纵系统会随发动机工作变化自行操纵行星齿轮,从而实现自动变速变矩。 但对于自动变速箱的液力变矩器而言,变钜期间的动力损失是一个很重要的问题,因为无论是通过液体还是通过气体,它们在动力传输的时候都会产生动力损失,并且这种损失对于自动变速箱而言是一个很大的弊病。 对于自动变速箱来说它的整体通手动变速箱其实还是有着很多的相似之处的,最重要的一点就是它的内部还是存在着离合器这个部件,只是离合器被设计在了变速箱的内部,并不像手动变速箱那样需要人为操作,并且也是通过大小不同的齿轮来进行动力传输的,只是换挡的信号是由行车电脑发出,而非人为控制(手自一体变速箱的手动模式除外)。 机械式自动变速箱(AMT) 这款名为机械式自动变速箱的变速箱虽然从使用的最终结果上来看同自动变速箱相同,但它与自动变速箱却有着一定的区别。AMT的全称为AutomatedMechanical Transmissioon,直译过来就是机械式自动变速箱。 虽然AMT同AT一样,都可以省去驾驶员的换挡动作,但这两种变速箱在机械的构造上却有着很大的区别。AMT变速箱,是在通常的手动变速箱和离合器上配备了一套电子控制的液压操纵系统,通过这个达到自动切换挡位的目的。说白了,这就是在手动变速箱的基础上加装了一个微机控制的自动操纵系统,通过这个系统改变原来的手动操纵系统。也就是说AMT实际上是由一个一个机器人系统来完成操作离合器和挂档的两个动作,它的技术核心是微机系统,电子技术以及质量直接决定着AMT的性能与运行质量。 目前在国内的汽车市场中使用AMT变速箱较多的就要算是微型车型和多款跑车了,像我们熟悉的上海通用雪佛兰新赛欧、奇瑞QQ、哈飞路宝、Smartfortwo等微小型车用的则都是AMT变速箱,而且像法拉利F430、奥迪R8、玛莎拉蒂GranTurismo08款 GT S 4.7升车型使用的也是AMT变速箱。 虽然这类变速箱拥有着换挡冲击力强、电控换挡或离合器部分容易损坏等缺点,但是它那结构简单、成本低的特点则是大多数低成本车型喜爱用它的原因。 机械式无级变速箱(CVT) 机械式无极变速箱,英文名称为Continuous Variable Transmission,而这也说明了中文意思为“机械式无级变速箱”,它开始进入国内消费者的目光绝对要归功于广州本田对飞度车型的引入,上一代飞度也成了国内少有的使用CVT变速箱的车型,而在其后日产、奥迪等厂家也将这种变速箱更多的使用到了自己旗下的车型上。 但其实CVT变速箱的发展已经有了一百多年的历史,而对于这种变速箱技术来说,德国奔驰公司绝对要算是它的鼻祖,早在1886年他们就将V型橡胶带式CVT变速箱安装在了他们生产的汽油机车型上。但由于橡胶带式CVT存在着一系列的缺陷,如功率有限(扭矩仅限于135牛米以下),离合器工作不稳定,液压泵、传动带和夹紧机构的能量损失较大等,因此这种变速箱技术没有被汽车行业普遍接受。 对于CVT变速箱如果将它的英文名称直译过来的话则为“连续可变变速箱”,顾名思义这种变速箱的变速和变钜是连续性的,也就是说它没有明确具体的挡位,虽然操作上类似于自动变速箱,但速比的变化却不同于自动变速箱的跳挡过程,并且它的速比变化是连续的,因此这种变速箱技术在动力传输上有着较好的持续性和顺畅性。 CVT变速箱是采用传动带和工作直径可变的主、从动轮相配合传动动力的,这样的传动方式使得传动系与发动机工况实现了最佳匹配。 金属链条式无级变速箱主要包括主动轮组、从动论组、金属带和液压泵等基本组件。主动轮组和从动轮组都有可动盘和固定盘组成,与油缸靠近的一侧带轮可以在轴上滑动,而另一侧的带轮则是固定死的。可动盘与固定盘采用的都是锥面结构,而它们的锥面形成的V型槽来与V型金属传动带啮合,发动机输出轴上输出的动力首先传递到CVT变速箱的主动轮上,然后通过V型传动带传递到从动轮,最后经过减速器、差速器传递给车轮。 从结构和使用上来讲,CVT变速箱有着换挡顿挫感小,输出动力线性好,动力损失小,燃油经济性好的优点。但它也正是因为结构的不同,有着一定的缺点。例如起步时由于变速箱容易出现打滑现象,动力传输受到影响;材料复杂,维修成本高;承受扭矩有限等。 双离合自动变速箱(DSG) 在这四种变速箱类型中,我们最后要向大家介绍的就是DSG双离合变速箱(Direct-ShiftGearbox)了,这种变速箱也被称为DCT(Double ClutchTransmission)。作为大众汽车2002年在德国沃尔夫斯堡首次向全世界展示的一项新技术,它不仅赢来了更大的关注,也赢来了不少的好评。 首先DSG(或DCT)是由两组离合器片集合而成,由电子控制及液压装置同时控制着这两组离合器及齿轮的各种动作。两个离合器片的其中一个控制着奇数挡和倒档,而另一个离合器片则控制的是偶数挡,在进行换挡时,1号离合器结合使得1挡齿轮啮合输出动力,而在此时2号离合器已经控制2挡齿轮处于啮合与非啮合的临界点上,只要1号离合器分离,2号离合器会在0.2秒之内将2挡齿轮啮合继续传送动力,以此类推直至最高挡位。 对于双离合变速箱(DSG)而言,它与自动变速箱(AT)的最大区别就是它没有设置液力变矩器,而是使用传动轴来进行动力的传输,这样一来液力变矩器损失动力的这一最大缺点就被消除了,大大的提高了动力的使用效率。 目前在国内使用的双离合变速箱有两种类型,一种是6速湿式双离合变速箱,还有一种是7速干式双离合变速箱,目前针对一汽大众所使用的这两种变速箱都已经实现了国产化(针对于国产车型而言,进口车型所采用的依旧是进口6速双离合变速箱),6速DSG双离合变速箱一汽-大众将其安排在了他们位于大连的工厂生产,而7速DSG双离合变速箱他们则安排在了位于上海的工厂生产。 在结构方面6速DSG双离合变速箱与7速DSG双离合变速箱并没有本质的差别,只是在变速箱的冷却方式和离合器预备点上有着细小的差异罢了。对于6速DSG双离合变速箱来说,由于它的采用的是水冷方式,所以它也被称之为湿式双离合变速箱;而对于7速DSG双离合变速箱来说,它与6速最大的不同(除挡位数量外)就要算是它的冷却方式采用的是风冷了,而也正是因为这个它也被称之为干式双离合变速箱。此外,它们在离合器的预备点上也有着一定的不同,对于6速DSG双离合变速箱来说它的两个离合器在静止状态下分别处于2挡和倒档预备,当你准备将车辆起步时,其中一个离合器会从2挡过度到1挡对其齿轮进行啮合;而7速DSG双离合变速箱则不需要这样,它的两个离合器预备点就是在1挡和倒档上,起步时没有6速DSG双离合的过度过程。
差速器在车辆传动系统中扮演着举足轻重的角色。它通过允许车辆的两个驱动轴以不同的速度旋转,显著提升了车辆的动力性能。在多变的路况下,差速器能够确保车辆的四个车轮根据路况调整动力输出,从而提高车辆的通行能力、稳定性和安全性。 差速器分类 汽车差速器位置示意图 汽车差速器结构 汽车发动机的动力经离合器、变速器、传动轴最后传送到驱动桥,再左右分配给半轴驱动车轮在这条动力传送途径上,驱动桥是最后一个总成,它的主要部件是减速器和差速器。 差速器由行星齿轮、行星轮架(差速器壳)、半轴齿轮等零件组成。发动机的动力经传动轴进入差速器,直接驱动行星轮架,再由行星轮带动左、右两条半轴,分别驱动左、右车轮。 差速器工作原理 差速器是调整左右轮转速差的装置,其工作原理是将发动机输出扭矩一分为二的装置,允许转向时对左右车轮输出两种不同的转速。当汽车转弯行驶或在不平路面上行驶时,使左右车轮以不同转速滚动,即保证两侧驱动车轮作纯滚动运动。 差速器工作过程 当汽车直走时,两个行星齿轮只公转,不自转。根据力学原理,转弯时内侧车轮势必会转的慢些,此时驱动轴转速不变,行星轮此时一边绕半轴公转,一边自转。 汽车直线行驶时:传动轴过来的驱动力转向90°传递到从动锥环齿轮上,从动锥齿轮带动4个小齿轮一起旋转(和车轮旋转方向一样),并带动侧齿轮旋转,从而驱动车轮前进,左右两个驱动轮所遇到的阻力一样,中间4个小齿轮不自转。 汽车转弯时:左右车轮遇到的阻力就不同,左侧齿轮和右侧齿轮间就会产生阻力差,它便会使中间4个小齿轮在绕半轴旋转的同时还要产生自转,从而吸收阻力差,使左右车轮能够以不同的速度旋转,让汽车顺利转弯。 差速器作用示意图 换个角度再来给大家了解一下! 减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要。减速器结构紧凑,效率较高,传递运动准确可靠,使用维护方便,可以成批生产,因此应用非常广泛。 减速器的工作原理 减速器一般用于低转速大扭矩的传动设备,把电动机、内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。 减速器的基本构造: 减速器主要由传动零件(齿轮或蜗杆)、轴、轴承、箱体及其附件所组成。其基本结构有三大部分:(1)齿轮、轴及轴承组合;(2)箱体;(3)减速器附件; 齿轮、轴及轴承组合小齿轮与轴制成一体,称齿轮轴,这种结构用于齿轮直径与轴的直径相关不大的情况下,如果轴的直径为d,齿轮齿根圆的直径为df,则当df-d≤6~7mn时,应采用这种结构。而当df-d>6~7mn时,采用齿轮与轴分开为两个零件的结构,如低速轴与大齿轮。此时齿轮与轴的周向固定平键联接,轴上零件利用轴肩、轴套和轴承盖作轴向固定。 箱体是减速器的重要组成部件,它是传动零件的基座,应具有足够的强度和刚度。箱体通常用灰铸铁制造,对于重载或有冲击载荷的减速器也可以采用铸钢箱体。 减速器附件 为了保证减速器的正常工作,除了对齿轮、轴、轴承组合和箱体的结构设计给予足够的重视外,还应考虑到为减速器润滑油池注油、排油、检查油面高度、加工及拆装检修时箱盖与箱座的精确定位、吊装等辅助零件和部件的合理选择和设计。 大多数减速器的箱体采用中等强度的铸铁铸造而成,重型减速器则采用高强度铸铁和铸钢,单件少量生产时也可用钢板焊接而成。减速器箱体的外形要求形状简单、表面平整。为了便于安装,箱体常制成剖分式,剖分面常与轴线平面重合。 常用减速器的特点 ▲一级斜齿圆柱齿轮减速器 ▲一级圆柱蜗杆减速器 ▲二级斜齿圆柱齿轮减速器 ▲二级圆柱齿轮电动机减速器(同轴式) ▲二级斜齿圆柱齿轮减速器(轴装式) ▲摆线针轮减速器 ▲谐波齿轮减速器 ▲行星减速器 减速器装配一般步骤 安装底座→输入轴轴部装配→中间轴轴部装配→输出轴轴部装配→安装各轴→啮合旋转→上盖部装装配→上盖装配→螺栓装配→端盖装配 ;
导读:今天我们聊聊在机械设计中,我们需要掌握有关减速器和变速器的内容!减速器和变速器两者都是工作机与原动机之间速度变换的装置。其中将原动机转速变换成一种固定转速输给工作机的装置称为减速器(一般是降低原动机转速,实现定传动比传动);将原动机转速变换成多种转速输给工作机的装置称为变速器(实现可变传动比传动) 一、减速器 减速器是原动机和工作机之间的独立的闭式传动装置,用来降低转速和增大转矩,以满足工作需要。减速器结构紧凑,效率较高,传递运动准确可靠,使用维护方便,可以成批生产,因此应用非常广泛。 减速器的工作原理: 减速器一般用于低转速大扭矩的传动设备,把电动机、内燃机或其它高速运转的动力通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,普通的减速机也会有几对相同原理齿轮达到理想的减速效果,大小齿轮的齿数之比,就是传动比。 减速器的基本构造: 减速器主要由传动零件(齿轮或蜗杆)、轴、轴承、箱体及其附件所组成。其基本结构有三大部分:(1)齿轮、轴及轴承组合;(2)箱体;(3)减速器附件; 齿轮、轴及轴承组合小齿轮与轴制成一体,称齿轮轴,这种结构用于齿轮直径与轴的直径相关不大的情况下,如果轴的直径为d,齿轮齿根圆的直径为df,则当df-d≤6~7mn时,应采用这种结构。(我们推荐你关注“机械工程师”公众号,第一时间掌握干货知识、行业信息)而当df-d>6~7mn时,采用齿轮与轴分开为两个零件的结构,如低速轴与大齿轮。此时齿轮与轴的周向固定平键联接,轴上零件利用轴肩、轴套和轴承盖作轴向固定。 箱体是减速器的重要组成部件,它是传动零件的基座,应具有足够的强度和刚度。箱体通常用灰铸铁制造,对于重载或有冲击载荷的减速器也可以采用铸钢箱体。 减速器附件: 为了保证减速器的正常工作,除了对齿轮、轴、轴承组合和箱体的结构设计给予足够的重视外,还应考虑到为减速器润滑油池注油、排油、检查油面高度、加工及拆装检修时箱盖与箱座的精确定位、吊装等辅助零件和部件的合理选择和设计。 大多数减速器的箱体采用中等强度的铸铁铸造而成,重型减速器则采用高强度铸铁和铸钢,单件少量生产时也可用钢板焊接而成。减速器箱体的外形要求形状简单、表面平整。为了便于安装,箱体常制成剖分式,剖分面常与轴线平面重合。 常用减速器的特点: ▲一级斜齿圆柱齿轮减速器 ▲一级圆柱蜗杆减速器 ▲二级斜齿圆柱齿轮减速器 ▲二级圆柱齿轮电动机减速器(同轴式) ▲二级斜齿圆柱齿轮减速器(轴装式) ▲摆线针轮减速器 ▲谐波齿轮减速器 ▲行星减速器 减速器装配一般步骤: 安装底座→输入轴轴部装配→中间轴轴部装配→输出轴轴部装配→安装各轴→啮合旋转→上盖部装装配→上盖装配→螺栓装配→端盖装配 ; 二、变速器 变速器是用来改变来自发动机的转速和转矩的机构,它能固定或分档改变输出轴和输入轴传动比,又称变速箱。变速器由变速传动机构和操纵机构组成,有些汽车还有动力输出机构。(我们推荐你关注“机械工程师”公众号,第一时间掌握干货知识、行业信息)传动机构大多用普通齿轮传动,也有的用行星齿轮传动。如果变速器输出轴的转速可以连续变化,则称为无级变速器,否则称为有级变速器。 变速器的工作原理: 机械式变速箱主要应用了齿轮传动的降速原理。简单的说,变速箱内有多组传动比不同的齿轮副,而汽车行驶时的换档行为,也就是通过操纵机构使变速箱内不同的齿轮副工作。如在低速时,让传动比大的齿轮副工作,而在高速时,让传动比小的齿轮副工作。 2.1 有级变速器 塔轮变速器: 两个塔形带轮分别固定在轴Ⅰ、Ⅱ上,传动带可在带轮上移换三个不同的位置。由于两个塔形带轮对应各级的直径比值不同,所以当轴Ⅰ以固定不变的转速旋转时,通过移换带的位置可使轴Ⅱ得到三级不同的转速。这种变速器大多采用平带传动,也可用V带传动。其优点是传动平稳,结构简单。但尺寸较大,变速不方便。 滑移齿轮变速器 滑移齿轮是在轴上可以移动的,它所传递的扭距是传到轴上的,用滑键或花键连接,齿轮啮合实现变速。这种变速器变速方便,结构紧凑,传动效率高,应用广泛,但不能使用斜齿轮。 离合式齿轮变速器 可以采用斜齿轮或人字齿轮,使传动平稳。若采用摩擦式离合器,则可在运转中变速。其缺点是齿轮处在经常啮合状态,磨损较快,离合器所占空间较大。 2.2 无级变速器 有些机械为了适应工作条件的变化,往往需要连续的地改变其工作速度,这就需要采用无级变速器。无级变速器有机械式、电动式、电磁式和液压式等多种,机械式无级变速器具有结构简单、传动性能好、适用性强、维护方便和效率高等优点,所以应用广泛。 ▲滚轮—平盘式无级变速器 ▲菱锥无级变速器 无级变速器的优缺点: 优点:结构简单,过载时传动元件间打滑可避免损坏机器;传动平稳无噪声;易于平缓连续地变速等; 缺点:不能保证准确的传动比;传动效率较低;外形尺寸较大;变速范围较小;