电机,也称电动机(俗称马达),是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。电动机被广泛应用的推动力来自直流电动机的问...
三极管优点:耐压高;缺点:电流驱动 MOS管优点:开关速度快,电压驱动 一、一键开关机电路(小鱼冠名) (知识点不多,但是电路设计很巧妙) 1.1效果 按下按键松开→ 再次按下按键松开→ 1.2电路过程及原理 1.2.1上电,开关断开 上电时,开关断开→通过,给电容充电→电容上方电压达到→三极管基级电压为0→三极管断开→MOS管栅极电压为→不小于负的→MOS管关断→ 1.2.2按下开关 电容电压为→三极管基级电压为,三极管导通;同时通过放电→MOS管栅极经三极管导通至地,MOS管栅极电压为0→小于负的→MOS管导通→,电路处于开机状态。 1.2.3松开按键 当电容电压放电到等于三极管BE之间的开启电压,约0.7v时,三极管饱和导通电流由通过提供,三极管一直开启。这时即使松开按键,电路仍处于开机状态。 三极管导通时,集电极的电压约0,所以电容的电压也会接近于0。 1.2.4再次按下按键 按下按键→电容上端电压为0,三极管基级电压为0→三极管断开,MOS管栅极电压为→MOS管关闭→ 其中,由于电阻选取的非常大,使不能通过,使三极管导通,而且电容的电压也不能升高。 1.2.5松开按键 松开按键,通过,给电容充电→电容上方电压达到,再次按下按键后,电路又处于开机状态。 1.3器件参数 输入电压3~6v,器件参数可以参考下面的数值。 1.4电路缺点 当输出端连接的负载电容比较大时,容易出现MOS管关不断的情况。可以在输出端对地接一个几百欧的限流电阻,原因如上。 1.5陈氏总结 纵观整个电路过程:开关控制电容,电容控制三极管,三极管控制MOS管。 二、延时开关电路 (本电路知识很基础,但是讲解过程非常联系单片机实际情况) 2.1效果 配合单片机程序实现长按两秒开关机,短暂按下松开其他需要的功能。 2.2电路说明 =单片机上电电压=3.3V 单片机输出口:单片机写信号 单片机输入口:给单片机信号 的作用:反馈给单片机开关S1按下与否的状态。 D4上拉电阻接到3.3v,即单片机的一直是高电平,除非按下按键,D4就导通将拉低到0.7V。由于口写程序的时候,有上下限,例如在1v以下都是低电平,2.5v以上都是高电平(模数转换)。 2.3电路过程及原理 2.3.1按下和松开开关 按下开关后,电流通过→R15→D5→S1→GND将G点电压下拉为二极管的管压降0.3v。,MOS管导通,很小,单片机上电。接受开关关闭的信号后,单片机将设置成高电平,此时由于Q9导通,无论开关是按下还是没有按下,MOS管始终导通。 类比上一个电路,该电路此时如果误操作了开关也没有事,由处的高电平来保证单片机上电,不像上一个电路利用不太可靠的电容充放电。 2.3.2延时两秒开关机 利用对开关的监视功能,开/关机时开关闭合两秒,单片机系统做亮屏/息屏、接通/断开传感器、设置高/低电平等动作,松开按钮彻底开/关机。监视下还可以编写短暂开关键的其他作用,达到长按两秒开关机,按一下就松开是其他功能。 三、与门电路(跟我学电脑冠名) (本电路十分简单,但是别出心裁的使用方法) 3.1效果 两个三极管都给高电平导通才可以驱动MOS管,输出才有电压。 四、H冠名 4.1效果 该电路和二中的电路有异曲同工之妙。 该电路可以实现软开启功能,增加一个电容(C1),一个电阻(R2)。 软开启,是指电源缓慢开启,以限制电源启动时的浪涌电流。 4.2电路过程及原理 4.2.1不上电且Control 为低电平或高阻 控制电源开关的输入信号Control 为低电平或高阻时→三极管Q2的基极被拉低到地,为低电平→Q2不导通→MOS管Q1的Vgs = 0(电源没上电)→MOS管Q1不导通→+5V_OUT 无输出。 电阻R4是为了在 Control 为高阻时,将三极管Q2的基极固定在低电平,不让其浮空。 4.2.2刚上电且Control 为低电平或高阻(实现软启动) 当电源 +5V_IN 刚上电时,要求控制电源开关的输入信号 Control 仍为低电平或高阻,即关闭三极管Q2,从而关闭MOS管Q1。 因 +5V_IN 还不稳定,不能将电源打开向后级电路输出。 电源 +5V_IN 上电完成后,MOS管G极与S极两端均为5V,仍然Vgs = 0。 电容上没有充电。 4.2.3上电完成且Control 为高电平 ①三极管Q2的基极为0.7V,可算出基极电流Ibe为: (3.3V - 0.7V) / 基极电阻R3 = 0.26mA ②三级管Q2饱和导通,Vce ≈ 0。电容C1通过电阻R2充电(现在由于三极管可以导地了),即C1与G极相连端的电压由5V缓慢下降到0V,导致Vgs电压逐渐增大。 ③MOS管Q1的Vgs缓慢增大,令其缓慢打开直至完全打开。最终Vgs = -5V。 ④利用电容C1的充电时间实现了MOS管Q1的缓慢打开(导通),实现了软开启的功能。 4.2.4上电完成且Control 为低电平 电源完全打开后,+5V_OUT 输出为5V电压。 此时将 Control 设为低电平,三极管Q2关闭,电容C1与G极相连端通过电阻R2放电,电压逐渐上升到5V,起到软关闭的效果。软关闭一般不是我们想要的,过慢地关闭电源,可能出现系统不稳定等异常。
最近对MOS管的驱动设计进行相关思考和仿真,这里将一些感悟写出来,仅供记录。 使用分立器件搭建MOS驱动的话,一般会使用互补的三极管搭建图腾柱电路,但是为什么会是图腾柱的结构不是半桥的结构呢?又为什么是要用三极管呢?用MOS管不可以吗?因为这些思考,便开始了一些仿真和实验。 首先,下图是经典的图腾柱结构,这个电路是可以正常驱动MOS的。 但是,这个电路存在一些不足之处,比如输出的电压总是不能到电源轨,会差一个VBE的结压降(个人认为是VBE,有些文章写的是CE结压降,但是我认为这里是电压跟随器形式,输出跟随B极电压),大约是0.7V左右,虽然存在这个问题,但是拿来驱动MOS是没问题的,因为MOS也是有一个开启电压的,但是用着总是不太舒服。同时注意这里的三极管一般选取大电流、高放大倍数的,最好是开关三极管。 由于输出受限,所以就引发了我的思考,下面是使用MOS搭建的类似电路。 首先要明确的是,上面电路基本不能正常工作。因为这样也基本是电压跟随的形式,但是输出会与输入有一个MOS开启电压的差距,显然比三极管大多了。由此导致后级的功率MOS更不能正常工作了。 然后又搭建了下面两种半桥结构的电路。 上面两种电路都勉强可以工作,但是会存在驱动管上下直通的问题,导致驱动管有直通电流会引起较大的损耗,解决的办法最好是加入死区控制。但是死区电路较为复杂且难以使用分立元件很好匹配,所以经过试验之后,引出了上面使用MOS搭建的电路,上面将MOS驱动的充放电电路使用二极管区分开来,并且使用RC对MOS的开启信号进行简单延时。效果仿真还是基本可以的,但是在输入频率变化的时候可能会影响效果,比如在LLC电路中不一定能应用。这种MOS半桥电路在有些驱动芯片的数据手册上面见到过,可能使用集成电路工艺可以实现更好的死区匹配以实现这种方式。 至于上面的三极管半桥方案,因为三极管是电流驱动器件,可以用基极电流限制最大电流,也可以利用电阻或电感减缓直通的损耗,但是不建议这样用,没太大必要,驱动MOS的话直接用三极管搭建图腾柱电路就可以实现很好的效果了。 至于死区电路,有下面的仿真。本来我想把下面电路应用,但是发现MOS的电平匹配也比较麻烦,所以就以失败暂时告终了。后面再想办法处理吧。 上面电路核心就是利用与门将原始信号和经过延时后的信号求与逻辑,可以延迟上升沿信号。同样,可以使用或门来对下降沿信号进行延迟。将设计一个小板子用来实现单独PWM信号的死区生成。
在数字电路中,所谓“门”就是只能实现基本逻辑关系的电路。最基本的逻辑关系是与、或、非,最基本的逻辑门是与门、或门和非门。逻辑门可以用电阻、电容、二极管、三极管等分立原件构成,成为分立元件门。也可以将门...
Buck芯片 部分芯片有SS引脚,该引脚为软启动引脚,特点是电压升高不是瞬间跳变而是慢慢升高到额定电压。 同步整流的BUCK电路比普通的BUCK电路效率高,成本低。所以多用同步整流芯片,少用像LM2596这样的芯片(体积大,效率低,发热严重)。 提高效率的方法: 1、使用 小的MOS管,将两个MOS管并联可以进一步减小MOS管的; 2、使用DCR小的电感,开关频率越高,使用的电感越小 3、输出电容最好用多个MLCC(0.1uF、10uF、22uF),输入电容最好用一个大的固态电容加上几个小的贴片电容(1000uF、22uF、0.1uF) 4、提高输出电流 电感选择: 电感的选择取决于输入电压与输出电压的压差、所需输出电流与芯片开关频率,计算公式如下: 计算出电感值后,购买略大于计算值的使用,电感越大电源的纹波越小,但效率越低,根据实际情况选择电感大小。 电感选型: 常用电感有非屏蔽电感、半屏蔽电感、全屏蔽电感三类。 非屏蔽电感: 半屏蔽电感(就是漏了一半电感在外面,没全包住): 全屏蔽电感(把线全部包住): 非屏蔽电感会产生大量的漏磁,它们会进入其它回路和滤波元件中。在噪声敏感的应用中要使用半屏蔽或全屏蔽电感,敏感电路和回路要远离电感。特别是VO到FB的走线,要避开电感和二极管,特别注意不能和电感平行。 所以最好使用全屏蔽电感,避免漏磁干扰电路。 消除Buck转换器中的EMI问题: 1、转换器中的EMI源头: 造成EMI问题的辐射源有两类:交变电场(高阻),交变磁场(低阻)。Buck架构DC/DC转换器中主要的辐射源通常是磁场。磁场辐射是由小型电流环中的高频电流形成的。电流环所生成的高频磁场会在离开环路大约0.16以后逐渐转换为电磁场。现实中造成辐射超标的原因常常是应该极小化的环路变成了大的环路,或者是附加在线路上的导线形成了多余的辐射。这些大回路或导线所形成的天线效应将在总的辐射中发挥主要的作用。 2、转换器中的电流回路 Buck架构DC/DC转换器中存在两个电流发生剧烈变化的主回路: 上图(b)所示为引脚波形,区间Q1通,Q2关;区间Q1关,Q2通。 1.当上桥MOS管Q1导通,电流从电源流出,经Q1和L1后进入输出电容和负载,再经地线回流至电源输入端。在此过程中电流的交变成分会流过输入电容和输出电容。这里说的电流路径如上图红线所示,标记为. 2.当Q1截止以后,电感电流还会继续保持原方向流动,而同步整流开关MOS管Q2将在此时导通,这时电流经Q2、L1、输出电容流动并经地线回流至Q2,其回路如上图蓝线所示,标记为. 3.电流和都是不连续的,这意味着它们在发生切换的时候都存在陡峭的上升沿和下降沿,这些陡峭的上升沿和下降沿具有极短的上升和下降时间,因而存在很高的电流变化速度,其中就必然有很多高频成分。 将整个电路拆成两个工作区域,一个是区域,一个是区域。区域在时有电流,在时没电流,电流变化率大,生成的高频噪声就多。反观区域,由于电感的存在,电流不能跳变,相对稳定,电流变化率小,产生的高频噪声就少。所以进行Buck转换器PCB布局时,区域的面积应当尽可能设计的小一点。 芯片的VIN引脚和GND引脚之间要接一个0805封装的COG(最好)或者X7R(便宜)0.1uF电容,这个小电容越靠近芯片的VIN和GND引脚越好,在此小电容旁边再并联大容量MLCC电容。例如10uF或者22uF的0805电容。 芯片开关频率小于等于5MHz,VIN引脚和GND引脚之间就用一个0.1uF的0805COG电容;大于5MHz就使用0.01uF的电容。 SW引脚与FB引脚要越远越好 3、输入和输出的滤波处理 理想情况下,输入、输出电容对于Buck转换器的开关电流来说都具有极低的阻抗。但实际上,电容都存在ESR和ESL,它们都增加了电容的阻抗,并且导致上面出现额外的高频电压跌落。这种电压跌落将在电源供应线路上和负载连接电路上形成相应的电流变化。 由于Buck转换器输入电流的不连续特性和实际为转换器供电的电源线通常都很长的缘故,输入回路A3所造成的辐射也可能是很客观的,并且可导致超出规格的传导辐射(150kHZ~30MHz),不能通过电磁兼容(EMC)的传导测试检验。 对输入滤波: 为了降低输入电容造成的电压跌落,可以在靠近Buck芯片的地方放置多种不同尺寸的低ESR的MLCC电容,例如可将1206封装的20uF和0603或0402封装的100nF电容结合起来使用。为了降低输入回路的噪声,强烈建议在输入线上添加额外的LC滤波器(如一个1uH电感+100uF电解电容),用以抑制电源输入端可能出现的振铃信号,确保输入电源的稳定。 对输出滤波: 使用不同尺寸的MLCC电容作为输出电容Cout,小尺寸的0603和0402的22nF~100nF电容效果就很好,可以有效阻止源于开关切换节点的高频噪声经由电感L1的寄生电容耦合到输出端。输出线上添加磁珠可以构成额外的LC滤波器(如一个22uF的1206MLCC+0603 4A磁珠)。但使用高频磁珠可以防止输出回路变成有效的环形天线,但要注意磁珠可能会是转换器的负载瞬态响应特性和负载调整特性变差。如果应用中的负载在这分面有严格要求,就不要使用磁珠,可以直接将转换器尽可能地靠近负载,通过对铜箔的优化布置使环路的面积最小化。 4、降低转换器的开关切换速度 如果通过PCB布局和滤波设计的优化仍然不能让一个Buck转换电路的辐射水平低于需要的水平,那就只能降低转换器的开关切换速度来降低辐射水平。 EMI辐射通常发生在50MHz~300MHz频段,部分芯片可以通过设计外围电路改变开关频率,适当降低开关频率,可以降低辐射水平。 5、在自举电路上增加串联电阻 对于大多数应用来说在自举电容Cboot上串联一个10欧姆的电阻Rboot就可以降低辐射EMI 6、RC缓冲抑制电路 正确添加RC缓冲电路可有效地抑制振铃现象,同时会增加开关切换的损耗。 在开关节点SW处和功率地之间串联一个电阻和电容,注意和的大小一定要计算正确,随意放两个上去,并不会有效果,还会减少效率。 7、RL缓冲抑制电路 就是在电源处和VIN引脚之间接一个RL并联电路,如下图和。
为什么需要使用恒流源电路,有以下几个主要原因: 【基本定义】恒流源:是一种能够提供稳定电流的电路,不因环境温度变化而改变。广泛的应用于led驱动电路中,有降压驱动和升压驱动。 1、保持电流稳定 2、延长设备寿命 3、提高效率 4、减小电压变化的影响【具体设计】简单的恒流源用分立元件可以如图1/图2搭建;图二中Q1/Q2交替导通使得R3两端电压保持在0.7v,恒流稳定在0.7/R3;对于高精度恒流源需要使用运放来控制输出,因为它提供了反馈环路给输入,控制输出稳定;对于高功率的恒流源需要更复杂的设计,但是基本框图和运放一致;【测试注意】判断高精度恒流源电路有多个关键指标,延时(Vin->电流输出)、电流过冲<5%(电流波形上冲下冲)、上升沿和下降沿时间(反映了一块电路的响应时间)、电流波形完整(无振铃无掉坑)、一致性(不同板子直接的差异)。 PS:常见问题, 1.mos管发热是因为mos的D、S存在导通电阻,大电流流过会发热损耗。管子关断时电流续流流经体二极管,其导通压降会产生功耗。今天有个小伙伴说他的dcdc输出电流大烧坏了mos;2.如果负载电流逐渐增大,对应的输出电压会越来越低;输入功耗也需要提高,在dc source加大电流限制提供更高的功耗输入实现大的电流输出;并且要考虑电感的续流能力是否能达到10A。
阻抗匹配 减少信号反射:当信号在传输线中传输时,如果源端阻抗、传输线阻抗和负载阻抗不匹配,就会导致信号反射。反射信号会与原信号叠加,造成信号失真、过冲、下冲或振铃等问题。串联电阻可以调整信号源的输出阻抗,使其与传输线和负载的阻抗更好地匹配,从而减少反射,提高信号传输的质量和稳定性。 优化传输效率:在高频信号传输中,阻抗匹配能够使信号能量更有效地从源端传输到负载端,减少能量在传输过程中的损耗,提高传输效率。例如,在高速数字电路中,如 DDR 内存的数据线和时钟线等,通常会串联电阻进行阻抗匹配,以确保信号的完整性和高速传输的准确性。 抑制噪声和干扰 降低高频噪声:串联电阻与信号线的分布电容、负载的输入电容等组成 RC 电路,能够降低信号边沿的陡峭程度,减少信号中的高频成分。高频信号在传输过程中更容易产生辐射干扰和被其他电路耦合,通过降低高频成分可以减少电磁干扰(EMI)的产生,提高电路的抗干扰能力。例如,在一些射频电路和高速数字电路中,串联电阻有助于降低信号的高频噪声,使电路符合电磁兼容性(EMC)标准。 吸收干扰脉冲:在长信号线或与快速跳变的时钟信号靠近的布线上,信号线容易受到干扰,或耦合到毛刺或窄脉冲。串联电阻可以在一定程度上吸收这些干扰脉冲,使信号更加稳定。例如,在一些数字电路中,复位信号上串联电阻能吸收干扰信号或静电干扰,防止复位误操作。 保护电路元件 限制电流:在电路中串联电阻可以限制电流的大小,防止过电流对后续电路元件造成损坏。特别是在一些对电流敏感的元件,如芯片的输入引脚、晶体管的基极等,串联电阻可以起到限流作用,保护元件免受过大电流的冲击。例如,当 5V 信号驱动 3.3V 芯片时,串联一个小电阻可以限制流进芯片的电流,防止芯片内部的钳位二极管因过流而损坏。 有些热插拔的接口会用这个方式来支持热插拔。 防止静电放电(ESD)和电气超载(EOS):串联电阻可以与其他保护元件(如 TVS 管)一起使用,在电路受到静电放电或电气超载时,电阻可以限制电流的上升速率和峰值电流,从而保护电路元件不受过电压冲击的损害。例如,在 USB 接口的 D + 和 D - 线上通常会串联一个小电阻,用于 ESD 防护。 方便调试 测量电流:在调试阶段,串联电阻可以方便工程师通过测量电阻两端的电压来间接测量电路中的电流,而无需断开电路或使用专门的电流测量仪器。根据欧姆定律,已知电阻值和电阻两端的电压,就可以计算出通过电阻的电流,从而了解电路的工作电流情况。 进行滤波调试:在一些需要进行滤波调试的电路中,串联电阻与电容组成的 RC 滤波器可以方便地调整滤波器的参数,如截止频率等,以达到最佳的滤波效果。通过改变串联电阻的阻值,可以改变 RC 滤波器的时间常数,从而调整滤波器对不同频率信号的衰减特性。 信号衰减和调节 衰减信号幅度:在某些应用中,需要对信号的幅度进行衰减,以满足后续电路的输入要求或防止信号幅度过大导致电路饱和或失真。串联电阻可以根据需要选择合适的阻值来实现对信号幅度的衰减。例如,在音频放大器的输入级,有时会串联一个电阻来衰减输入信号的幅度,以避免放大器饱和2。 调整信号上升沿和下降沿:在一些脉冲信号电路中,串联电阻可以与其他元件一起组成电路,用于调整脉冲信号的波形。通过改变电阻的阻值和电路的参数,利用RC充放电,可以控制脉冲信号的上升沿和下降沿时间。
电子电路很容易在过压、过流、浪涌等情况发生的时候损坏,随着技术的发展,电子电路的产品日益多样化和复杂化,而电路保护则变得尤为重要。电路保护元件也从简单的玻璃管保险丝,变得种类更多,防护性能更优越。 电路保护的意义是什么? 在各类电子产品中,设置过压保护和过流保护变得越来越重要,那么电路保护的意义到底是什么,今天就来跟大家聊一聊: (1)由于如今电路板的集成度越来越高,板子的价格也跟着水涨船高,因此我们要加强保护。 (2)半导体器件,IC的工作电压有越来越低的趋势,而电路保护的目的则是降低能耗损失,减少发热现象,延长使用寿命。 (3)车载设备,由于使用环境的条件比一般电子产品更加恶劣,汽车行驶状况万变,汽车启动时产生很大的瞬间峰值电压等。因此,在为这些电子设备配套产品的电源适配器中,一般要使用过压保护元件。 (4)通信设备,通信场所对防雷浪涌有一定的要求,在这些设备中使用过压保护、过流保护元件就变得重要起来,它们是保证用户人身安全和通信正常的关键。 (5)大部分电子产品出现的故障,都是电子设备电路中出现的过压或者电路现象造成的,随着我们对电子设备质量的要求越来越高,电子电路保护也变得更加不容忽视。 那么电路保护如此重要,常用的电路保护元件有哪些?今天就给大家介绍几种: 防雷器件 01陶瓷气体放电管: 防雷器件中应用最广泛的是陶瓷气体放电管,之所以说陶瓷气体放电管是应用最广泛的防雷器件,是因为无论是直流电源的防雷还是各种信号的防雷,陶瓷气体放电管都能起到很好的防护作用。其最大的特点是通流量大,级间电容小,绝缘电阻高,击穿电压可选范围大。 02半导体放电管: 半导体放电管是一种过压保护器件,是利用晶闸管原理制成的,依靠PN结的击穿电流触发器件导通放电,可以流过很大的浪涌电流或脉冲电流。其击穿电压的范围,构成了过压保护的范围。固体放电管使用时可直接跨接在被保护电路两端。具有精确导通、快速响应(响应时间ns级)、浪涌吸收能力较强、双向对称、可靠性高等特点。 03玻璃放电管: 玻璃放电管(强效放电管、防雷管)是20世纪末新推出的防雷器件,它兼有陶瓷气体放电管和半导体过压保护器的优点:绝缘电阻高(≥10^8Ω)、极间电容小(≤0.8pF)、放电电流较大(最大达3kA)、双向对称性、反应速度快(不存在冲击击穿的滞后现象)、性能稳定可靠、导通后电压较低,此外还有直流击穿电压高(最高达5000V)、体积小、寿命长等优点。其缺点是直流击穿电压分散性较大(±20%)。 过压器件 04压敏电阻: 压敏电阻也是一种用得最多的限压器件。利用压敏电阻的非线性特性,当过电压出现在压敏电阻的两极间,压敏电阻可以将电压钳位到一个相对固定的电压值,从而实现对后级电路的保护。 压敏电阻的响应时间为ns级,比空气放电管快,比TVS管稍慢一些,一般情况下用于电子电路的过电压保护其响应速度可以满足要求。 压敏电阻的结电容一般在几百到几千pF的数量级范围,很多情况下不宜直接应用在高频信号线路的保护中,应用在交流电路的保护中时,因为其结电容较大会增加漏电流,在设计防护电路时需要充分考虑。压敏电阻的通流容量较大,但比气体放电管小。 05贴片压敏电阻的作用: 贴片压敏电阻主要用于保护元件和电路,防止在电源供应、控制和信号线产生的ESD。 06瞬态抑制二极管: 瞬态抑制器TVS二极管广泛应用于半导体及敏感器件的保护,通常用于二级保护。基本都会是用于在陶瓷气体放电管之后的二级保护,也有用户直接将其用于产品的一级保护。 其特点为反应速度快(为ps级) ,体积小 ,脉冲功率较大 ,箝位电压低等。其10/1000μs波脉冲功率从400W ~30KW,脉冲峰值电流从0.52A~544A ;击穿电压有从6.8V~550V的系列值,便于各种不同电压的电路使用。 过流器件 07自恢复保险丝: 自恢复保险丝PPTC就是一种过流电子保护元件,采用高分子有机聚合物在高压、高温,硫化反应的条件下,掺加导电粒子材料后,经过特殊的工艺加工而成。 自恢复保险丝(PPTC:高分子自恢复保险丝)是一种正温度系数聚合物热敏电阻,作过流保护用,可代替电流保险丝。 电路正常工作时它的阻值很小(压降很小),当电路出现过流使它温度升高时,阻值急剧增大几个数量级,使电路中的电流减小到安全值以下,从而使后面的电路得到保护,过流消失后自动恢复为低阻值。 静电元件 08ESD静电放电二极管: ESD静电放电二极管是一种过压、防静电保护元件,是为高速数据传输应用的I/O端口保护设计的器件。 ESD静电二极管是用来避免电子设备中的敏感电路受到ESD(静电放电)的影响。可提供非常低的电容,具有优异的传输线脉冲(TLP)测试,以及IEC6100-4-2测试能力,尤其是在多采样数高达1000之后,进而改善对敏感电子元件的保护。 09电感的作用: 电磁的关系相信大家都清楚,电感的作用就是在电路刚开始的时候,一切还不稳定的时候,如果电感中有电流通过,就一定会产生一个与电流方向相反的感应电流(法拉第电磁感应定律),等到电路运行了一段时间后,一切都稳定了,电流没有什么变化了,电磁感应也就不会产生电流,这时候就稳定了,不会出现突发性的变故,从而保证了电路的安全,就像水车,一开始由于阻力转动的比较慢,后来慢慢趋于平和。 10磁珠的作用: 磁珠有很高的电阻率和磁导率,它等效于电阻和电感串联,但电阻值和电感值都随频率变化。它比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻抗,从而提高调频滤波效果,在以太网芯片上用到过。 声明 本号所刊发文章仅为学习交流之用,无商业用途,向原作者致敬。因某些文章转载多次无法找到原作者在此致歉,若有侵权请联系小编,我们将及时删文或者付费转载并注明出处,感谢您的支持!
可靠性预计是为了评估设计可靠性能否满足要求,确定设计的薄弱环节,为优化设计方案提供依据,绝不是为了应付检查,那种为预计而预计的形式没有任何意义.......