温控器的原理也就是温控器的控制原理,温度探头所测量的温度反馈给处理器,通过判断与设置温度的差值,给予继电器信号判断是加热还是冷却,从而让控温系统达到平衡准确的状态。 其中我们所说的PID温控仪就是这个原...
滤波器的主要功能就是内部的滤波电路,通过滤波器,使用人员能够对特定的频率信号加以处理。为增进大家对滤波器的认识,本文将对滤波器以及滤波器的主要参数予以介绍。如果你对滤波器具有兴趣,不妨继续往下阅读哦...
温度传感器的常用性自然无需小编多言,我们在生活中对于温度传感器也是相对较为熟悉的。为增进大家对温度传感器的认识,本文将基于两点介绍温度传感器:1.温度传感器的安装使用注意事项,2.温度传感器的发展现状。...
计数器是生活中常遇见的器件之一,比如在跳绳里面具备的跳绳个数的计数器等。那么,为增进大家对计数器的认识,本文将对机械式计数器的基本内容,以及机械式计数器的结构予以介绍。如果你对计数器具有兴趣,不妨继...
电机,也称电动机(俗称马达),是指依据电磁感应定律实现电能的转换或传递的一种电磁装置。它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源。电动机被广泛应用的推动力来自直流电动机的问...
三极管优点:耐压高;缺点:电流驱动 MOS管优点:开关速度快,电压驱动 一、一键开关机电路(小鱼冠名) (知识点不多,但是电路设计很巧妙) 1.1效果 按下按键松开→ 再次按下按键松开→ 1.2电路过程及原理 1.2.1上电,开关断开 上电时,开关断开→通过,给电容充电→电容上方电压达到→三极管基级电压为0→三极管断开→MOS管栅极电压为→不小于负的→MOS管关断→ 1.2.2按下开关 电容电压为→三极管基级电压为,三极管导通;同时通过放电→MOS管栅极经三极管导通至地,MOS管栅极电压为0→小于负的→MOS管导通→,电路处于开机状态。 1.2.3松开按键 当电容电压放电到等于三极管BE之间的开启电压,约0.7v时,三极管饱和导通电流由通过提供,三极管一直开启。这时即使松开按键,电路仍处于开机状态。 三极管导通时,集电极的电压约0,所以电容的电压也会接近于0。 1.2.4再次按下按键 按下按键→电容上端电压为0,三极管基级电压为0→三极管断开,MOS管栅极电压为→MOS管关闭→ 其中,由于电阻选取的非常大,使不能通过,使三极管导通,而且电容的电压也不能升高。 1.2.5松开按键 松开按键,通过,给电容充电→电容上方电压达到,再次按下按键后,电路又处于开机状态。 1.3器件参数 输入电压3~6v,器件参数可以参考下面的数值。 1.4电路缺点 当输出端连接的负载电容比较大时,容易出现MOS管关不断的情况。可以在输出端对地接一个几百欧的限流电阻,原因如上。 1.5陈氏总结 纵观整个电路过程:开关控制电容,电容控制三极管,三极管控制MOS管。 二、延时开关电路 (本电路知识很基础,但是讲解过程非常联系单片机实际情况) 2.1效果 配合单片机程序实现长按两秒开关机,短暂按下松开其他需要的功能。 2.2电路说明 =单片机上电电压=3.3V 单片机输出口:单片机写信号 单片机输入口:给单片机信号 的作用:反馈给单片机开关S1按下与否的状态。 D4上拉电阻接到3.3v,即单片机的一直是高电平,除非按下按键,D4就导通将拉低到0.7V。由于口写程序的时候,有上下限,例如在1v以下都是低电平,2.5v以上都是高电平(模数转换)。 2.3电路过程及原理 2.3.1按下和松开开关 按下开关后,电流通过→R15→D5→S1→GND将G点电压下拉为二极管的管压降0.3v。,MOS管导通,很小,单片机上电。接受开关关闭的信号后,单片机将设置成高电平,此时由于Q9导通,无论开关是按下还是没有按下,MOS管始终导通。 类比上一个电路,该电路此时如果误操作了开关也没有事,由处的高电平来保证单片机上电,不像上一个电路利用不太可靠的电容充放电。 2.3.2延时两秒开关机 利用对开关的监视功能,开/关机时开关闭合两秒,单片机系统做亮屏/息屏、接通/断开传感器、设置高/低电平等动作,松开按钮彻底开/关机。监视下还可以编写短暂开关键的其他作用,达到长按两秒开关机,按一下就松开是其他功能。 三、与门电路(跟我学电脑冠名) (本电路十分简单,但是别出心裁的使用方法) 3.1效果 两个三极管都给高电平导通才可以驱动MOS管,输出才有电压。 四、H冠名 4.1效果 该电路和二中的电路有异曲同工之妙。 该电路可以实现软开启功能,增加一个电容(C1),一个电阻(R2)。 软开启,是指电源缓慢开启,以限制电源启动时的浪涌电流。 4.2电路过程及原理 4.2.1不上电且Control 为低电平或高阻 控制电源开关的输入信号Control 为低电平或高阻时→三极管Q2的基极被拉低到地,为低电平→Q2不导通→MOS管Q1的Vgs = 0(电源没上电)→MOS管Q1不导通→+5V_OUT 无输出。 电阻R4是为了在 Control 为高阻时,将三极管Q2的基极固定在低电平,不让其浮空。 4.2.2刚上电且Control 为低电平或高阻(实现软启动) 当电源 +5V_IN 刚上电时,要求控制电源开关的输入信号 Control 仍为低电平或高阻,即关闭三极管Q2,从而关闭MOS管Q1。 因 +5V_IN 还不稳定,不能将电源打开向后级电路输出。 电源 +5V_IN 上电完成后,MOS管G极与S极两端均为5V,仍然Vgs = 0。 电容上没有充电。 4.2.3上电完成且Control 为高电平 ①三极管Q2的基极为0.7V,可算出基极电流Ibe为: (3.3V - 0.7V) / 基极电阻R3 = 0.26mA ②三级管Q2饱和导通,Vce ≈ 0。电容C1通过电阻R2充电(现在由于三极管可以导地了),即C1与G极相连端的电压由5V缓慢下降到0V,导致Vgs电压逐渐增大。 ③MOS管Q1的Vgs缓慢增大,令其缓慢打开直至完全打开。最终Vgs = -5V。 ④利用电容C1的充电时间实现了MOS管Q1的缓慢打开(导通),实现了软开启的功能。 4.2.4上电完成且Control 为低电平 电源完全打开后,+5V_OUT 输出为5V电压。 此时将 Control 设为低电平,三极管Q2关闭,电容C1与G极相连端通过电阻R2放电,电压逐渐上升到5V,起到软关闭的效果。软关闭一般不是我们想要的,过慢地关闭电源,可能出现系统不稳定等异常。
本文介绍了车辆中常见的三种轮速传感器——磁电型、霍尔型和磁阻型。磁电型利用磁生电原理,无源且输出交流电;霍尔型通过改变磁场强度产生方波信号;磁阻型则通过霍尔元件和普通电阻的变化获取电信号。车速与传感器产生的电信号频率直接相关。 轮速传感器有三种类型,分别是磁电型、霍尔型、磁阻型。均是配合信号轮,通过信号轮转动引起磁场强度的变化,从而引起电信号的变化。 1.磁电型轮速传感器 磁电型轮速传感器应用的是磁生电的原理,当通过线圈的磁场强度发生变化时,线圈内会产生感应电动势。图中,磁铁固定放置,信号轮旋转会引起线圈磁场变化,信号轮接近与远离线圈会产生相反方向的电动势,从而形成交流电。当车轮转速越快,则信号轮的转速也越快,产生交流电的频率也越快。 磁电型轮速传感器为无源型,无需外接电源,只有两根信号线。 2.霍尔型轮速传感器 通电的霍尔元件在磁铁的作用下,电子会发生偏转,从而产生霍尔电动势。 信号轮接近霍尔元件,磁场强度变大,霍尔电动势也会变大,信号轮远离霍尔元件,磁场强度变小,霍尔电动势也会变小。从而形成了方波信号。车速越快,方波信号的频率越快。 3.磁阻型轮速传感器 同样是应用霍尔效应。图中蓝色部分是一个霍尔元件,黄色部分是一个普通电阻。信号轮转动,磁场强度会发生变化,使得流过霍尔元件的电流发生变化,此时,普通电阻两端的电压也会变化。当电流变大时,普通电阻两端的电压也增大。 本文来源:汽车电子库
信号过冲问题产生的危害要注意 信号过冲是常见的信号质量问题,如果出现信号过程时,会给电路带来损坏或者潜在的隐患问题。 对于信号过冲问题,常常发生在信号快速切换时,如低电平到高电平或者高电平到低电平的切换时间出现。 对于过冲问题,需要注意,它可能在信号的完整性,干扰等方面给整体电路带来隐患。 它可能会导致信号失真,使得信号的完整性与数据传输的准确性产生干扰,比如因过冲产生的振铃电压波动,就可能导致高低电平的读取造成误判,从而影响整体的信号传输。 同时过冲问题是会增加电磁辐射的,可能会干扰其他电路或设备,对于比较严重的过冲,甚至是会损坏接收端的电路的,比如说CMOS器件等(过冲时间过长或电压过大时造成器件失效)。 电容在刚一通电时,相当于短路 为什么电容器在刚一通电瞬间表现的像短路呢?这个主要原因就是电容在初始充电阶段的时候,内部是没有电压的,因此,电容两端的电势差为零,导致瞬时电流会快速进入电容,此时相当于短路。 这个就是电容的特性,在未通电的时候,电容的两端相当于一个没有充电的电荷存储设备,所以在通电的一瞬间,电容内部还没有电荷积累,这个时候就相当于一个空的容器,可以看成一个导体,并且这个导体电阻很低,电流可以快速的通过,所以此时是可以看成短路的,不过这个短路现象持续的时间极短,电容器会逐渐充满电荷不再表现出短路特性。
非线性应用的运放器是工作在传输特性的正负饱和段,输出电压只有正负最大值Uom两种取值。 运放器工作在开环状态时(不加负反馈),输入端的电位只要有一点差异,则输出电压极容易达到饱和段,如果再加入正反馈,则输...