PCB侧边电镀通过PCB的牢固连接并降低设备故障的可能性,特别是对于小型PCB和主板,这种电镀的例子常见于 Wi-Fi 和蓝牙模块中。
把走在表层的线称为微带线(Microstrip Line),主要是由于其结构特点和信号传播方式具有“微型波导”的性质,这一命名来源于微波工程的理论基础。以下是具体原因: 1. “微带”命名的来源 “微”表示微型、紧凑:微带线的尺寸较小,通常是为了满足微波频段(高频信号)的小尺寸要求,与传统的大型波导(如同轴电缆或矩形波导)相比,它更为紧凑、适合 PCB。 “带”表示其带状的物理形态:微带线是指在 PCB 的表层走线时,信号线以平面带状的形式分布,线宽较窄但足够承载高频信号。 2. 与传统波导的对比 微带线在高频信号中具有类似于波导的功能,它通过基板下方的接地平面和表面的信号线来形成导电路径,限制电磁场的传播。 相比传统波导(如矩形波导或同轴电缆),微带线实现了更低的成本、更简单的制造工艺,同时保留了良好的高频性能。 3. 表层走线的特性 微带线的电磁场分布和设计特点决定了其作为表层传输线的独特优势: 电磁场传播特点: 微带线的电场分布在信号线和接地平面之间,部分在 PCB 的介质中,部分在空气中。 这种场分布使微带线的传播特性兼具空气和介质的影响。 优势: 走线容易,可直接在 PCB 表面加工。 阻抗容易调整,通过改变线宽、基板厚度等参数即可实现特定的阻抗匹配(如 50Ω 或 75Ω)。 4. “微带”与其他传输线的命名对比 相比于其他类型传输线,微带线的命名反映了其显著特征: 带状线(Stripline):带状线走线埋在 PCB 内部,与微带线不同,电磁场完全限制在介质中。 共面波导(Coplanar Waveguide):共面波导的信号线和接地线位于同一层,强调了“共面”的几何特性。 槽线(Slotline):槽线通过接地平面的狭缝传播信号,命名反映了狭缝结构。 微带线(Microstrip Line):它的信号线在表层,是表面波导的一种简化形式,体现了其“微型带状”特性。 5. 总结 微带线的命名反映了它的主要特点: “微”:表明其相较传统波导的小尺寸和集成度,适合在 PCB 上用于高频信号传输。 “带”:形容其带状的物理结构,信号线以带状形式在表层传播。 因此,表层的信号走线被称为微带线,既简洁又准确地描述了它的几何形状、工作原理和电磁特性。 PCB 走线方式多种多样,主要根据工作频率、阻抗匹配要求、电磁兼容性等因素来选择。以下是主要的 PCB 走线形式及其详细说明: 1. 微带线(Microstrip Line) 结构:导体线在介质(PCB基板)表面,下面是一层连续的接地平面。 特性: 单端传输线,易于制造。 信号主要在导线上方和周围传播,电场分布在空气和介质中。 特性阻抗由线宽 www、基板厚度 hhh、介电常数 ϵr\epsilon_rϵr 决定。 应用: 高频信号传输(如射频电路)。 低制造成本的单层或双层 PCB。 2. 带状线(Stripline) 结构:导体线嵌入在两层接地平面之间,完全被介质包裹。 特性: 电磁场完全限制在介质内部,因此辐射较低,电磁兼容性好。 阻抗更容易控制,但导线长度增加会带来更大的损耗。 对称结构提供了更好的信号完整性。 应用: 多层 PCB,尤其是对信号完整性要求高的高速数字信号传输。 3. 共面波导(Coplanar Waveguide, CPW) 结构:导体线和接地平面位于同一层,导线两侧有接地线,通常还有底部接地层。 特性: 适用于高频信号传输。 电磁场主要集中在导线和接地线之间。 阻抗易于调整,通过改变导线与接地线的间距即可。 分类: 开放式共面波导:无底部接地平面。 带底部接地的共面波导:有底部接地平面,抑制辐射损耗。 应用: 高频电路,如射频和微波通信电路。 4. 平行板波导(Parallel-Plate Waveguide) 结构:两层金属平面之间的信号传输,信号导体与地不直接接触。 特性: 适用于较宽频带的信号。 电磁场在两金属板间传播。 辐射损耗较小,但结构复杂。 应用: 特殊的射频设计。 5. 差分对(Differential Pair) 结构:两条紧密并行的导线,一条传递正信号,另一条传递负信号。 特性: 抗噪能力强,差分信号的噪声可以互相抵消。 对称布线可以减少 EMI(电磁干扰)。 阻抗控制重要,通常为 90Ω 或 100Ω。 应用: 高速数字信号,如 HDMI、USB、LVDS、以太网。 差分对确实可以分为微带线差分对和带状线差分对,主要根据差分对的走线位置(PCB 表层或内层)以及对应的电磁场分布和结构来分类。两者在设计、特性以及应用场景上有所不同,下面将进行详细的对比和说明: 1. 微带线差分对 定义: 微带线差分对是指差分对的两根信号线位于 PCB 的表层,且其参考平面(接地层)位于信号线的下方。 特点: 电磁场分布: 差分对之间的电磁场主要集中在两根差分线之间(差分模式)。 一部分场分布在 PCB 的介质中,另一部分暴露在空气中(因此有部分影响来自空气)。 传输阻抗: 通过线宽(w)、间距(s)、基板厚度(h)等参数设计实现特定的差分阻抗(通常为 100Ω 或 90Ω)。 适用频率: 适合高频或超高频场合,常用于信号速度要求高(如 GHz 级别)的场景。 优势: 易于加工:微带线差分对直接在 PCB 表层加工,制造简单。 便于调试和测试:表层走线可以更容易地接触探针或示波器进行测量。 缺点: 对环境干扰较敏感:由于部分电磁场暴露在空气中,易受到周围环境干扰(如相邻信号线的串扰、外界电磁辐射等)。 辐射略高:信号辐射比埋在内部的带状线差分对稍高。 2. 带状线差分对 定义: 带状线差分对是指差分对的两根信号线位于 PCB 的内层,并夹在两个参考平面(接地层或电源层)之间。 特点: 电磁场分布: 电磁场完全限制在 PCB 的介质中,差分模式的场集中在差分对之间。 周围的接地层(上下接地平面)对信号提供了更好的屏蔽效果。 传输阻抗: 通过差分线的线宽(w)、间距(s)、介质厚度(h 和 b)等参数设计实现特定的差分阻抗。 适用频率: 更适合超高频、高速信号(如 PCIe、SATA 等高速接口),特别是对电磁干扰要求严格的场景。 优势: 抗干扰能力强:由于电磁场限制在介质中,外界的干扰被显著减小。 辐射低:带状线结构的电磁场更加集中,信号辐射低。 缺点: 加工复杂:需要设计成内层走线,制造工艺稍复杂。 不便于调试:内层信号不容易接触到探针或测试设备。 6. 悬空线(Suspended Line) 结构:导体线悬空在空气中,接地面位于导线下方。 特性: 电磁场分布大部分在空气中,损耗小。 制作复杂,不常用于常规 PCB。 应用: 高频/低损耗传输需求。 7. 嵌入式波导(Embedded Waveguide) 结构:信号线嵌入介质中,同时被上下接地平面包围。 特性: 对电磁场的约束更强。 电磁干扰低,适合高密度设计。 应用: 高可靠性和高频应用,如 5G、毫米波通信。 8. 槽线(Slotline) 结构:接地平面上有一条窄缝隙,信号通过缝隙传播。 特性: 信号沿缝隙传输。 通常与共面波导结合使用。 应用: 微波天线和滤波器。 9. 跳线(Wire Bond) 结构:使用导线或焊接跳线来连接两点。 特性: 辐射损耗较高。 用于跨越 PCB 的复杂布线,但不适合高频信号。 应用: 调试或低频电路。 对比总结 类型 电磁干扰 制作难度 阻抗控制 应用场景 微带线 较高 容易 一般 射频/高速数字信号 带状线 低 较难 精确 高速数字信号传输 共面波导 较低 较容易 容易 高频射频信号 差分对 低 较难 精确 高速数字信号 槽线 中 较难 一般 微波天线 平行板波导 低 较复杂 精确 宽频带信号传输 悬空线 最低 难 精确 高频/低损耗场景
这个话题真的是老生常谈了,但依旧有很多小伙们搞不清楚,在设计电路的时候还是感到困惑,今天核桃就与大伙在聊一聊这个吧!模拟地和数字地之间到底是用磁珠还是用电阻(0Ω电阻)?目前主流的两种方式就是使用磁珠或者0Ω的电阻。这两种方案也是公说公有理婆说婆有理。(1)使用磁珠的理由:磁珠本质上就是等效于电阻和电感并联,在高频段磁珠的频率响应更好,特别是对于高频噪音,抑制效果良好。且对于直流电几乎没有阻碍。磁珠其实就是一个带阻限波器。 图片来源于网络(2)使用电阻的理由:价格便宜,选型方便,较窄的电流路径,能有效的抑制环路电流,特别对于噪音来讲,会起到很大的抑制作用,而且电阻对于所有频段都一视同仁,不像磁珠,具有选频特性。这两种方案,你更支持哪一种呢?欢迎评论区留言!最后核桃谈一下自己的看法吧!核桃在实际的项目中,用的更多的还是0Ω的电阻,从使用频率上看,0Ω电阻适应的场景更多,当然了,也可能是核桃接触的项目问题。但从理论上分析,个人建议如下:如果可以预估出噪点频率,那完全可以采用磁珠,效果会更好,但如果说噪点频率完全无法预估,加上如果选用的磁珠不合的情况下,此时这种情形,0Ω电阻更为合适。如果板子的使用场景存在高频静电时,板卡采用磁珠,很容易因为静电电流在磁珠两端产生压差,从而影响到模拟电路的正常运行。在《EMC(电磁兼容)设计与测试案例分析》这本书中也有科普了模拟地和数字地的处理方式,有兴趣的小伙伴可以去看看书籍,部分截图如下所示:
瞬态电压抑制二极管(TVS,Transient Voltage Suppressors)二极管,是一种在传统齐纳二极管工艺基础之上制造的一种电路保护元器件,也被称为 瞬变抑制二极管、瞬态电压抑制器、雪崩击穿二极管 等。其具有单向与双向之分,当两端经受瞬间高能量冲击时,就会以皮秒级别的速度将两端的阻抗值由高阻抗变化为低阻抗,从而将瞬间大电流接地,并把两端的电压箝制在一个预定的数值上,进而确保后级电路不会受到瞬态高压尖峰脉冲的影响。 总而言之,TVS 二极管凭借皮秒级导通速率、大瞬态功率、低漏电流与电容、容易控制的箝位电压、击穿电压偏差小、可靠性高、体积小 等优势,被广泛应用于敏感电路的过压保护当中(特别是 ESD 静电防护)。目前国际市场上比较主流的 TVS 生产制造企业有 美国威世 Vishay、美国力特 Littelfuse、日本安森美 Onsemi、荷兰安世 Nexperia 等厂家,而国内最近几年也涌现出了 乐山无线电 LRC、台州电子 TechPublic 以及国巨旗下的 君耀电子 BrightKing 等比较有实力的供应商。 原理图符号 瞬态电压抑制器(TVS,Transient Voltage Suppressors)狭义上是指雪崩击穿二极管,这是一种二极管形式的高效保护器件,通常采用较大尺寸的 SMA 或者 SMB 封装,结电容比较大,主要运用在防浪涌防护以及电源 ESD 等领域。而广义上的 TVS 是指包含有 TVS 二极管的 ESD 专用防护器件,其原理图符号如下图所示: 单向 & 双向 TVS 二极管可以具体划分为单向和双向两种类型,双向 TVS 主要应用于交流电压电路,而单向 TVS 一般运用于直流电路(使用的时候需要反接在电路当中,这意味着使用的时候需要注意极性。考虑到物料规格的统一,以及采购成本的差异较为细微,双向 TVS 在实际生产环境下使用更为普遍)。 当单向 TVS 二极管被应用于直流电路,在电路正常工作的时候,TVS 处于截止状态(高阻态),不影响正常工作。但是当电路中出现瞬态电压突变(达到 TVS 的雪崩击穿电压),TVS 二极管就会迅速由高阻态转变为低阻态,将由于异常过压所导致的瞬态电流接入到地平面,同时将这个瞬态电压箝位在一个比较低的水平,进而保护后级电路免遭瞬态电压突变的损坏(瞬态电压突变消失以后,TVS 二极管又会恢复为高阻态)。 伏安特性参数 涉及选型的 TVS 二极管伏安特性参数,主要涉及到 VRWM、IR、VBR、IPP、VC、Cj 六个,阅读时请结合如下的伏安特性曲线图: 反向截止电压 VRWM:不会造成 TVS 二极管损坏的最高峰值电压(如果是交流电压则使用真有效值表示),低于该参数时 TVS 不会导通,设计电路的额定工作电压(5V 或者 3.3V)应当低于这个参数。 反向漏电流 IR:当工作在低于反向截止电压 VRWM 的时候,TVS 所承受的最大反向电流。也就是说如果向 TVS 两端施加电压 VRWM,此时通过的电流就是 TVS 的漏电流 IR。通常情况下,这个参数小于 0.1uA 微安。 击穿电压 VBR:即 ESD 防护生效的电压,只要超过该参数,TVS 二极管就会击穿导通。导通时间一般不会超过 400 毫秒,避免较大电流损坏元器件。 脉冲峰值电流 IPP:峰值反向脉冲电流是指 TVS 按照 IEC61000-4-5:2014 或者 GB/T 17626.5-2019 标准,使其工作在规定的 8/20 微秒或 10/1000 微秒的脉冲波形下,此时 TVS 所允许通过的最大峰值电流。也就是达到箝位电压 VC 的时候,通过 TVS 二极管的电流,超过该参数会导致 TVS 的损毁。 箝位电压 VC:即通过峰值脉冲电流 IPP 的时候,TVS 两端产生的峰值电压。IPP 以及 VC 这两个参数相互联系,主要用于衡量 TVS 抵抗浪涌脉冲电流以及限制电压的能力。IPP 越大耐电流冲击能力越强,VC 越小说明 TVS 的箝位特性越好。 脉冲峰值功率 Ppp:即 箝位电压 VC 与峰值脉冲电流 IPP 的乘积,超过该参数同样会造成 TVS 二极管的损毁。 结电容 Cj:即 TVS 当中的寄生电容,高速电路设计过程当中,需要重点关注这个参数,结电容过大会影响到信号的完整性。 本文接下来的内容当中,会对上述一系列的 TVS 二极管选型参数,进行更加详细的说明。 反向截止电压 VRWM 正常情况下,TVS 二极管应当处于截止状态(没有导通),因此 TVS 的反向截止电压 VRWM 应当大于被保护电路的工作电压,从而确保 TVS 不会影响被保护电路的正常工作,反向截止电压 VRWM 的取值可以通过下面的参考公式计算得到: VRWM=(1.1∼1.2)×VCC 如果 VRWM 比被保护电路的额定工作电压更大,那么 TVS 二极管的漏电流就会越小。反之,VRWM 越小,TVS 二极管的箝位电压 VC 就会越小,对于后级电路的保护效果会相对更好。 注意:上述公式当中的 VCC 等于被保护电路的工作电压,例如 12V、5V、3.3V、1.8V 等等。 箝位电压 VC TVS 二极管的箝位电压 VC,应当小于被保护电路最大可承受的瞬态安全电压,否则当 TVS 处于箝位状态的时候,VC 会损坏后级的被保护电路: VC
在上篇里,我们介绍了通用音频在 PCBA 中的传输格式,其中涉及到多种格式,本文将挑选一个最常用的数字传输格式进行相关分析,以帮助大家了解如何合理地在软硬件上进行设计。 在 PCB 板内的...
继续 EMC 的相关内容,《EMC整改搞死人呦!不过它具体会测哪些项目呢?(上)》,接下来是EMS 的相关测试项。 前面有说到EMI测试,主要是测试设备是否对周围环境产生有害干扰,那EMC测试中的另外一个测试部分EMS测试是怎样的呢? 对于EMS测试,全称Electromagnetic Susceptibility,电磁抗扰度测试,测试的项目就比较多了,像常常听说的静电ESD测试就是在此类里面。它的主要测试内容就是验证电子产品在电/电磁等干扰环境中是否可以正常工作。 所以总论来说EMI是讲究不要随意伤害“别人”,而EMS则是考验的抗击打能力了。 a, 静电放电抗扰度测试(ESD) ESD测试,就是测试设备对静电放电的耐受能力,根据不同的产品标准,2kV,4KV,......,20KV等等,正负电压,空气放电接触放电都排上,啪啪打就行。这个也是静电测试仪进行测试,也是EMC测试中位数不多还不是很贵的测试设备。 b, EFT电快速瞬变脉冲群抗扰度测试 电快速瞬变抗扰度测试是EMC重要的测试,它是一种由多个快速瞬变脉冲组成的脉冲群耦合到电气和电子设备的电源端口,控制端口,信号等,然后再观察电子设备在这些脉冲干扰下是否会对正常工作造成影响,是否会使设备产生误动作或者损坏等,验证的就是电子设备在这种暂态干扰环境时的性能表现。 c, 浪涌抗扰度测试 浪涌抗扰度测试主要测试评估设备在电源线或者信号线在遭遇高能量瞬态干扰时的抗扰能力。 浪涌试验模拟了这些场景,可以有效评估模拟电子设备在受到雷击,开关操作或者是其他的暂态高压干扰时的抗扰能力。 d, RS射频电磁场辐射抗扰度测试 射频电磁场辐射抗扰度也叫做辐射抗扰度,辐射敏感度,它是最基本呢的电磁兼容靠扰度测试项目之一,测试的是电子设备在存在辐射的情况下,抵抗辐射的一种能力。 辐射敏感度越高,那电子设备的抗干扰能力就越低。上篇中的EMI中的辐射发射测试是测试的干扰别人的能力,这里的RS辐射抗扰度测试则是测试的不被别人干扰的能力。 e, CS射频场感应的传导骚扰抗扰度测试 CS射频场感应抗扰度测试是模拟基站,对讲机,手机等射频信号耦合到电子设备上面所造成的射频干扰,测试的是电子设备承受不同范围频率,如150KHz~230KHz等范围内射频发射机电磁骚扰的传导抗扰度怎么样。 f, PFMF工频磁场抗扰度测试 PFMF工频磁场抗扰度测试是测试电子设备在工频磁场干扰下的抗扰度,在遭受这类磁场扰动影响时的性能。 g, DIPS电压变化抗扰度测试测试 电压变化抗扰度测试的是交流电压跌落与暂降,短时中断抗扰度试验测试。如果电子设备对于电源的电压变化不能够很快的作出反应,那就有可能会引起设备故障。