CN3705和LM2596的锂电池充放电系统设计
chip37 2023-12-05

目录

1.系统原理设计

2.锂电池充电电路

2.1CN3705芯片简介

2.2设计电路

2.3电感的选着和计算

2.4工作方式

3.LM2596输出电路

3.1LM2596简介

3.2输出电路部分

小结

  目前,消费电子产品越来越多,如智能手机、平板电脑、PSP 游戏机等电子产品,给人们的生活工作娱乐都提供了极大的方便。然而,这些电子产品都有一个共性的缺点就是自身锂电池的容量有限,经常因为没电了,导致我们的电子产品无法使用。为了解决给电子产品续航问题,本文设计了一款集锂电池充电和放电一体的电路。

  1.系统原理设计

  锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,并且是可以充电的。本系统分为三个部分(如图1所示):CN3705 锂电池充电电路,12V 锂电池,LM2596 锂电池放电电路。可分为两类:锂金属电池和锂离子电池。锂离子电池不含有金属态的锂,并且是可以充电的。

系统原理框图

  图1 系统原理框图

2.锂电池充电电路

  2.1CN3705芯片简介

  CN3705 为降压模式锂电池充电芯片,具有恒流恒压充电方式。对于深度放电的电池,当电池电压低于设定的恒压充电电压的66.7%时,CN3705采用恒流充电电流的15% 对锂电池涓流充电。在恒压充电阶段,充电电流逐渐减小,当充电电流降低到外部电阻设定的值时,充电结束。芯片输入电压在12V 到28V之间,最大工作频率为300kHz,输出最大电流为5。

  2.2设计电路

CN3705 构成的锂电池充电电路

  图2 CN3705 构成的锂电池充电电路

  图2为CN3705构成的锂电池充电电路,电路结构为buck降压拓扑结构。输入电压在14V到28V之间,电路PWM开关频率为300kHz,最大输出电流为1.2A,最大输出电压为12.6V。适合给3节串联 3.7V标准锂电池充电。

  图2中,P沟道MOS管Q1、肖特基D2、电感L1以及电解电容C1构成经典的buck降压充电电路。Q1的选择要综合考虑转换效率、MOS管的功耗和最高温度。还要考虑的因素包括导通电阻Rd(on),栅极总电荷Qg,输入电压和最大充电电流。MOS 管损耗功率计算公式如下所示:

公式1

  Pd为MOS管功耗,Vbat为输出电压,Vcc为输入电压,Rd(a)为MOS在室温下的导通电阻,ICH为充电电流。一般,当输入电压小于20V时,MOS管的导通损耗大于开关损耗。所以要选择导通损耗较小的MOS管。D2为肖特基二极管,二极管流过电流能力要大于充电电流,二极管的耐压要大于最低输入电压。

  2.3电感的选着和计算

  在正常工作时,瞬态电感电流是周期性变化的。在 MOS 管导通期间,输入电压对电感充电,电感电流增加;在 MOS 管关断期间,电感向电池放电,电感电流减小。电感的纹波电流随着电感值的减小而增大,随着输入电压的增大而增大。有如下经验公式:

公式2

  其中f=300kHz开关频率,∆I为电感的纹波电流。在选取电感值时,可将电感纹波电流限制在∆I=0.2×ICH,最大电感纹波电流∆I出现在输入电压最大值和电感最小值的情况下。经计算电感取值电感取值

  2.4工作方式

  (1)恒压充电

  如图2所示,电池端的电压通过电阻R2和R4构成的电阻分压网络反馈到FB管脚,CN3705根据FB管脚的电压决定充电状态。当FB管脚的电压接近2.416V 时,充电器进入恒压充电状态。在恒压充电状态,充电电流逐渐下降,电池电压保持不变。恒压充电状态电池端对应的的电压为:

电压公式

  其中,Ib是FB管脚的偏置电流,其典型值为50nA。由于电阻R2和 R4 会从电池消耗一定的电流,在选取R2和R4的电阻值时,应首先根据所允许的消耗的电流选取R2 R4的值,然后再根据上式分别计算R2和R4的值。这里 R2和R4分别取值为510KΩ 和 120kΩ,得充电电压为 Vbat=12.71V

  (2)恒流充电

  恒流充电电流由ICH=200mV/R1决定,R1为连接于CSP管脚和BAT管脚之间的充电电流检测电阻。R1取值为0.2Ω,所以恒流充电电流设定为ICH=1A。

  (3)涓流充电

  在充电状态,如果电池电压低于所设置的恒压充电电压的 66.7%,即电池电压为 8.47V,充电器进入涓流充电模式,此时充电电流为所设置的恒流充电电流的 15%,即电流为 0.15A。

  (4)充电结束

  在恒压充电模式,充电电流逐渐减小当充电电流减小到 EOC 管脚的电阻所设置的电流时,充电结束。充电结束电流由下式决定:

公式

  R5为是从 EOC 管脚到地之间连接的电阻,单位为欧姆。设定充电结束电流为0.1A时,计算出 R5=1.3kΩ。

  (5)自动再充电

  充电结束以后,如果输入电源和电池仍然连接在充电器上,由于电池自放电或者负载的原因,电池电压逐渐下降,当电池电压降低到所设置的恒压充电电压的91.1% 时(即电压为11.58V),将开始新的充电周期,这样可以保证电池的饱满度在80% 以上。

  (6)温度监控

  为了监测电池的温度,采用负热敏电阻NTC(如图2电路所示)紧贴电池。当电池的温度超出可以接受的范围时,充电将被暂时停止,直到电池温度回复到正常范围内。

  锂电池的充电工作温度在0到45间,这里选取的负热敏电阻,满足在25 时应该为10kΩ,在上限温度点时其电阻值应该大约为3.5kΩ( 约对应50 );在下限温度点时其电阻值应该大约为32kΩ( 约对应0)。

  3.LM2596输出电路

  3.1LM2596简介

  LM2596 开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性。该器件内部集成频率补偿和固定频率发生器,开关频率为150KHz。此芯片还具有在特定的输入电压和输出负载的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80μA的待机电流,实现外部断电;具有自我保护电路(一个两级 降频限流保护和一个在异常情况下断电的过温完全保护电路)。

  技术特点

  ●3.3V、5V、12V的固定电压输出和可调电压输出

  ●可调输出电压范围1.2V~37V±4%

  ●输出线性好且负载可调节

  ●输出电流可高达3A

  ●输入电压可高达40V

  ●采用150KHz的内部振荡频率,属于第二代开关电压调节器,功耗小、效率高

  ●低功耗待机模式,IQ的典型值为80μA

  ●TTL断电能力

  ●具有过热保护和限流保护功能

  ●外围电路简单,仅需4个外接元件,且使用容易购买的标准电感

LM2596内电路框图

  图3 LM2596内电路框图

  3.2输出电路部分

  LM2576有多种型号,这里选择固定输出5V的LM2596芯片。此电路构成非常简单,如电路图4。只需要输入电容C10、C11,肖特基二极管D3,电感L2,输出电容C12、C13 即可。

LM2576放电电路

  图4 LM2576放电电路

  输入滤波电容,输入耐压和电流均方根是输入电容的重要参数。当LM2596 输入电压为12V 时,铝电解电容的耐压压大于18V(1.5&TImes;Vin)。输入电容电流的均方根为输出负载电流的一半,为 1.5A。根据图5所示,在曲线中,680μF/35V的电解电容满足要求。

  输出滤波电容一般选择耐压值为10V的电解电容既可以,为了得到输出较小的纹波,输出电容尽量选择大点。这里选择电容值为220uH的电解电容,输出纹波即可在1%之内。

电解电容耐压值,电流均方根,电容值关系

  图5 电解电容耐压值,电流均方根,电容值关系

  肖特基二极管D3这里选择5A/20V的IN5823既可以产生较好的效果。而且短路时也不会产生过载。

  输出电压占空比:D1=Vo/Vi=5/12=0.417

  电感L2由公式:

公式3

  计算得L2=324uH,其中Vi为输入电压,∆I为输出纹波电流,f为开关频率。

  小结

  经过测试此电路系统可以正常稳定工作,CN3705锂电池充电电路工作效率可以达到91.0%;LM2596放电电路工作效率,当输出1.0A电流时工作效率可达84%,输出电路2.1A时,电路工作效率可达82.3%,当输出3.0A电路时电路工作效率为79%。且输出电压纹波均小于2%。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 对话周祖成教授 - 清华大学与西门子EDA的合作之旅


  • 相关技术文库
  • 元器件
  • 电阻
  • 电容
  • 电感
  • MOSFET和三极管ON状态的区别

    MOSFET和三极管,在ON状态时,MOSFET通常用Rds,三极管通常用饱和Vce。

    前天
  • 一个采用N沟JFET与一只PNP型三极管组合而成的一个放大电路

    下图是一个采用N沟JFET与一只PNP型三极管组合而成的一个放大电路,原理上采用输入阻抗高的FET作为源极接地

    前天
  • 详解恒流二极管的恒流电路

    1、简单恒流源许多场合,由单个恒流管极管或几个恒流管串联、并联后串入有关电路,即可方便地构成简单的恒流源,既降

    前天
  • EMI、EMS与EMC:清晰区分与理解

    电子产品的电磁辐射问题越来越受到关注,相信大多数都对于EMC(电磁兼容性)这个名词也不陌生。

    前天
  • 蜂鸣器驱动电路的设计与实现

    从实际产品中分析电路设计存在的问题,提出电路的改进方案,使读者能从小小的蜂鸣器电路中学会分析和改进电路的方法

    前天
  • 揭秘MOS管GS极电阻的作用

    如果不及时把这些少量的静电泻放掉,那它两端的高压就有可能使场效应管产生误动作,甚至有可能击穿其G-S极。

    前天
  • 光电特性和内部电路

    以下是光电特性和内部电路 从内部电路可以看出 AK相当于二极管,可以理解为LED灯。 EC相当于三极管的发射极和集电极。作为“三极管”,这个接收管没有基极,显然是不行的。 接收管的基极有类似于光敏电阻的特性:根...

    02-22
  • 光电传感器的神奇世界:无法想象的奇妙应用

    Ø 教学手段 多媒体课件、多种光电教具演示 教学课时 3学时Ø Ø 教学内容 本章简单介绍光电效应、光电元件的结构和工作原理及特性,着重介绍光电传感器的各种应用。 第一节 光电效应及光电元件 光电效应的分类: 1)在...

    02-22
  • 揭秘:控制电路

    开关电源一般都采用脉冲宽度调制(PWM)技术, 其特点是频率高,效率高,功率密度高,可靠性高。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是一电磁骚扰(EMD)源,它产生的EMI信号有很宽的频...

    02-22
  • 电解电容三种测量方法

    三种测量方法,分别用万用表的电容档,电阻档,二极管蜂鸣档(大多是合体的一个档位) 电容单位法拉,千进制毫微纳皮 1,电容档 首先电容放电,小容量耐压低的电容简单正负极短接几秒就行,大电容的话就接了电阻接个...

    02-22
  • 高频线圈加热(感应加热)的应用

    高频线圈加热原理:是将工频交流电转换成频率一般为15~200kHz甚至更高的交流电,利用电磁感应原理,通过电感线圈转换成相同频率的磁场后,作用于处在该磁场中的金属体上。 利用涡流效应,在金属物体中生成与磁场强...

    02-22
  • 贴片电容正负极区分

    贴片铝电解电容的正负极区分判断方法 贴片铝电解电容的正负极区分和测量电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。也有用引脚长短来区别正负极长脚为正,短脚为负...

    02-22
下载排行榜
更多
评测报告
更多
广告