• PCB不同的颜色代表什么意思?

    大多数印刷电路板需要由工程师设计,在投入生产之前需要制作原型。

    01-14 313浏览
  • 在PCB生产过程中,影响传输线阻抗的因素

    在电子产品领域,PCB(Printed Circuit Board,印刷电路板)是极为关键的部件,无论是高速电路、高频电路还是毫米波相关产品,都离不开它。而 PCB 板的加工是一项复杂的系统工程,涵盖 PCB 材料、药水、加工工艺以及线路几何参数等多个方面,其中诸多因素都会对传输线的阻抗造成影响。 一、影响传输线阻抗的因素 (一)线路几何参数 1、线宽 线宽与阻抗成反比关系,即线宽越宽,阻抗越小;线宽越窄,阻抗越大。在生产过程中,若工艺不稳定致使线宽发生变化,那么阻抗也会随之改变。据与众多厂商合作的经验,传输线线宽的变化幅度通常在 10% 左右。将线宽变化类型设为 Gauss 分布,std 设为 10%,利用 ADS CILD 进行仿真分析,结果显示阻抗最低可达 46ohm,最高可达 58ohm。在较长的传输线上,这种极端状态可能会导致回波损耗增大,插入损耗也会相应增加。 2、线长 传输线长度增加时,信号传输路径变长,分布电容和电感也会相应增加,进而导致阻抗发生变化。随着线长的增长,信号在传输过程中受到的影响更为复杂,阻抗的改变也会对信号完整性产生较大影响 。此处说的不是特征阻抗。我们单纯把走线和与参考平面看成是电容关系,随着走线越长,综合出来的电容值也会变大。 3、线间距 线间距增大,线间的耦合电容减小,互感也会有所变化,这会使传输线的阻抗增大。合适的线间距对于控制传输线阻抗以及减少线间干扰至关重要,在 PCB 设计时需要根据具体的电路要求和信号特性来合理设置线间距 。 4、参考平面 参考平面是 PCB 设计中影响传输线阻抗的重要因素。传输线与参考平面之间的距离、参考平面的完整性以及参考平面的材质等都会对阻抗产生影响。当传输线与参考平面的距离减小时,电容增大,阻抗减小;反之,距离增大则阻抗增大。同时,若参考平面存在不连续或分割的情况,会导致传输线的电流分布发生变化,从而改变阻抗。此外,不同材质的参考平面具有不同的电导率和磁导率,也会影响传输线的阻抗特性 。 (二)PCB 材料相关 1、铜箔厚度 在 PCB 产品里,铜厚分为基铜厚度和镀铜厚度。通常基铜相对较为均匀,但也并非绝对;镀铜的均匀性则因工厂稳定性不同而差异较大。镀铜厚度的变化会致使传输线阻抗和损耗改变。假设镀铜的变化范围为 10%,通过 ADS CILD 进行统计分析,结果显示阻抗主要在 49.5 到 51ohm 之间变化,相较于线宽变化对阻抗的影响,其变化区间较小。 2、介质厚度 在 PCB 生产时,介质厚度的变化主要源于原材料、生产过程中的压合以及填胶环节。一旦介质厚度发生变化,不仅会造成阻抗改变,还会影响损耗,严重时甚至会导致传输线出现较大损耗。从仿真结果来看,阻抗变化分布在 44ohm 到 54ohm 之间,变化范围可达 10ohm。 3、介电常数 介电常数对传输线阻抗有着重要影响,一般来说,介电常数与阻抗成反比关系。不同类型的 PCB 板材具有不同的介电常数,即使是同一种板材,其介电常数也可能存在波动,进而影响传输线的阻抗。 4、介质损耗角 介质损耗角同样会对传输线的性能产生作用。 把一块环氧树脂印刷电路板材料(两面都没有覆铜)放到微波炉中,全功率加热1分钟它会被微波显著地加热。同样地,用陶瓷盘子,或者耐热玻璃也放进微波炉,它同样也被加热。事实上,几乎任何绝缘材料都能被微波炉加热。在交变电场环境中被绝缘材料吸收的热量,与这种材料的介电损耗系数(dielectric loss factor)成正比。当绝缘材料作为传输线的绝缘介质时,介电损耗会转化为信号衰耗。介电损耗越高,导致的衰耗越大。 如果我们的信号线附着在电介质基板上,信号是高频变化的交变电磁场,效果跟把基板放在微波炉是一样的情况,只不过能量没有那么大而已。 介电损耗是频率的函数。当数字设备的频率低于1GHz时,通常作为印刷电路板材料的环氧树脂(FR-4),其介电损耗可以忽略。在高频条件下,FR-4的介电损耗变得很大。对于高频电路,设计者应该选用陶瓷基板材料,如氧化铝。在千兆赫兹的情况下,这类材料的介电损耗系数更好。 (三)加工工艺相关 1、蚀刻因子 由于导体存在一定厚度,在生产过程中蚀刻出的导线并非标准的 “矩形” 结构,而是接近 “梯形”(实际也并非完全梯形)。该梯形的角度会随铜厚变化而改变,铜厚越薄,角度越接近 90°,而这个角度大小会影响阻抗。例如,当角度为 70° 时,阻抗约为 50ohm;当角度为 90° 时,阻抗约为 48.37ohm。 2、蚀刻药水特性 蚀刻药水的特性会影响蚀刻效果,进而影响导线的最终形态和尺寸,对传输线阻抗产生间接影响。 3、加工稳定性 加工稳定性是一个综合因素,它涵盖了生产过程中的多个环节。以传输线线宽为例,如果 PCB 生产过程中工艺不稳定,会导致线宽发生变化。根据与众多厂商合作的经验,传输线线宽的变化幅度通常在 10% 左右。将线宽变化类型设置为 Gauss 分布,std 设置为 10%,利用 ADS CILD 进行仿真分析,结果表明阻抗最低可达 46ohm,最高可达 58ohm。在较长的传输线上,这种极端状态可能会导致回波损耗增大,插入损耗也会相应增加。 二、综合影响分析 在实际生产过程中,影响传输线阻抗的因素并非单一变量变化,而是多个因素可能同时发生改变。当多个因素同时变化时,通过统计分析发现,阻抗主要在 40ohm 到 56ohm 之间变化,这已远远超出一般 50±10% 的要求。由此可见,对于高速高频电路产品或高端产品而言,在整个 PCB 设计和生产过程中,必须严格把控每一种物料、每一个线路几何参数以及每一个加工环节,否则极易导致产品出现意想不到的问题。 PCB工厂一般用于调整走线阻抗的手段有: PCB生产工厂在实现特征阻抗控制时,一般采用以下方法和工艺来确保设计满足信号完整性要求: 1. 选择合适的基板材料 使用具有精确且稳定介电常数(Dk)和介质损耗因子(Df)的材料,如 FR4、Rogers、PTFE 等。 控制基板厚度,以确保层间距离的一致性。 2. 走线宽度与间距控制 使用阻抗计算工具(如 Polar SI8000、ADS、HyperLynx)根据特定的特征阻抗要求(如 50Ω 或 100Ω)计算出走线宽度和间距。 精密的 PCB 生产设备可以将走线宽度和间距精确控制到微米级别。 3. 层叠结构优化 合理设计 PCB 的层数和层间叠层结构,确保信号层与参考地层之间的距离符合阻抗要求。 4. 蚀刻工艺控制 精密控制蚀刻时间和蚀刻参数,避免走线宽度和边缘不规则导致的阻抗变化。 使用化学或激光蚀刻工艺来实现高精度走线。 5. 预补偿设计 考虑制造公差,设计时适当调整走线宽度进行预补偿,以确保成品阻抗接近设计目标。 6. 电镀厚度控制 控制铜层厚度,因为铜的厚度变化会直接影响特征阻抗。 使用电镀后蚀刻工艺或控制化学镀铜厚度来确保一致性。 7. 阻焊层厚度与材料控制 阻焊层的厚度和介电常数会影响特征阻抗,因此需要严格控制阻焊材料的选择和厚度。 8. 阻抗测试与校准 在 PCB 生产过程中,使用阻抗测试仪(如 TDR 测试仪)进行在线或抽样检测。 通过闭环反馈调整生产参数,以优化生产结果。 9. 差分对走线控制 对于差分信号,需要严格控制差分对之间的走线间距、走线长度差(skew)和对称性。

    01-14 430浏览
  • MLCC的选型和失效分析

    片式多层瓷介电容器(MLCC)除有电容器“隔直通交”的通性特点外,还有体积小、比容大、寿命长、可靠性高和适合表面安装等特点。随着电子行业的飞速发展,作为电子行业的基础元件,片式多层磁介电容器也以惊人的速度向前发展,每年以10%~15%的速度递增。 毫不夸张地说,MLCC是电子大米,不可或缺。当MLCC失效时会导致整个电子系统出现故障,因此本文将MLCC的选型和失效分析做一个简单的科普介绍。 MLCC结构主要包括三大部分:陶瓷介质,金属内电极,金属外电极。而片式多层瓷介电容器它是一个多层叠合的结构,简单地说它是由多个简单平行板电容器的并联体,结构示意图如下所示。 MLCC大致可分为I类(低电容率系列)和II类(高电容率系列)两类,根据温度特性还可以进一步细分,温度特性由EIA规格与JIS规格等制定。 I类MLCC长处是由温度引起的容量变化小,短处是因电容率低不能具有太大容量,因此I类常用于温度补偿、高频电路和滤波器电路等;II类MLCC长处是因电容率高能够具有大容量,短处是由温度引起的容量变化大,因此II类常用于平滑电路、耦合电路和去耦电路等。 MLCC的关键参数为电容值、容差、耐压、绝缘电阻和相关特性曲线等,其中设计人员比较关注电容值、容差、耐压和绝缘电阻这几个参数,但是也要充分考虑MLCC在不同工作温度的容量变化率和DC-Bias效应导致的容量下降问题。 1)电容值:即静电容量,MLCC发展方向是小型化、大容量。 2)容差:在特定条件下测试的容值允许偏差范围,通常通过测试MLCC实际容值来检查是否满足被检MLCC容差是否符合规格要求。 3)损耗角正切(DF):MLCC的损耗角正切值(Dissipation Factor),定义为有功功率与无功功率的比值,DF=tanδ=ω·C·ESR。II类MLCC具有很高的介电系数和较大的损耗角正切值。DF是一种材料本征特性,是与介质材料、制造工艺等相关的重要质量参数。4)耐压:即介质击穿强度,介质强度表征的是介质材料承受高强度电场作用而不被电击穿的能力,通常用伏特/密尔(V/mil)或伏特/厘米(V/cm)表示。 当外电场强度达到某一临界值时,材料晶体点阵中的电子克服电荷恢复力的束缚并出现场致电子发射,产生出足够多的自由电子相互碰撞导致雪崩效应,进而导致突发击穿电流击穿介质,使其失效。 除此之外,介质失效还有另一种模式,高压负荷下产生的热量会使介质材料的电阻率降低到某一程度,如果在这个程度上延续足够长的时间,将会在介质最薄弱的部位上产生漏电流,这种模式与温度密切相关,介质强度随温度提高而下降。 任何绝缘体的本征介质强度都会因为材料微结构中物理缺陷的存在而出现下降,由于材料体积增大会导致缺陷随机出現的概率增大,因此介质强度反比于介质层厚度;类似地,介质强度反比于MLCC内部电极层数和其物理尺寸。基于以上考虑,需对MLCC进行耐压测试(一般为其工作电压的2.5倍)检查其耐压性能,要求被检MLCC不发生击穿失效。 5)绝缘电阻:绝缘电阻表征的是介质材料在直流偏压梯度下抵抗漏电流的能力,对于陶瓷介质来说,理论上其电阻率是无穷大的,但因为材料原子晶体结构中存在杂质和缺陷会导致电荷载流子出现,因此实际上陶瓷介质的电阻率也是有限的,并非无穷大。MLCC的绝缘电阻取决于介质材料配方、工艺过程(烧结)和测量时的温度,同耐压一样,绝缘电阻会随温度的提高而下降。通过在常温测试MLCC的绝缘电阻可以考核其烧结质量。 5)其他参数:除上述参数外,MLCC设计选用时还需参考相关特性曲线,如电压-电容量变化率特性图、阻抗-频率特性图等。在特定条件下,一个合格的MLCC电容值会表现出“失效”的状态,例如,一个10μF,0603,6.3V的电容在-30℃下直流偏置1.8V时测量值可能只有4μF。 特别重要的,选型除了对规格参数进行确认外,还需要考虑MLCC的质量等级是否与产品质量需求所匹配。传统的MLCC质量等级只有消费级和车规级,但是三星机电因为一些历史故事,因此在消费级和车规级中间增加了工业级的分级。 常见的失效模式主要为短路,导致短路的因素主要有如下几个: 1、制造方面因素 1)介质材料缺陷 介质内空洞:陶瓷粉料内的有机或无机污染、烧结过程控制不当等会导致介质内空洞产生。空洞会使耐压强度降低,发生过电击穿,与电应力过大导致电极融入形貌相似,还会引起漏电,漏电导致器件内部局部发热,进一步降低陶瓷介质的绝缘性能,形成恶性循环,严重时会使MLCC开裂、爆炸甚至燃烧。 介质分层:MLCC烧结为多层材料堆叠共烧,烧结温度高(可达1000℃以上)。层间结合力不强、烧结过程中内部污染物挥发、烧结工艺控制不当都可能导致分层。分层会导致介质击穿引起短路失效,与电应力过大导致电极融入形貌相似。 2)生产工艺缺陷 电极结瘤:电极结瘤会导致耐压强度降低发生击穿,与电应力过大导致电极融入形貌相似。MLCC烧结时温控失调,有机物挥发速率不均衡,严重时会出现微裂纹。这些微裂纹在短时间内可能不影响电气性能,若未在生产环节检验出来,在运输、加工、使用过程中裂纹可能进一步增大。 2、生产工艺方面因素 热应力裂纹形成机制:热应力裂纹是由于机械结构不能在短时间内消除因温度急剧变化所带来的机械张力而形成,这种张力是由热膨胀系数、导热性及温度变化率间的差异所造成。热应力产生的裂纹主要分布区域为陶瓷体靠近端电极的两侧,常见表现形式为贯穿陶瓷体的裂纹,有的裂纹与内电极呈现90°。这些裂纹产生后,多数情况下在刚刚使用时整机可正常工作,但使用一段时间后,裂纹内部会不断进入水汽或离子,在外加电压的情况下,致使两个端电极间的绝缘电阻降低而导致电容器失效。 焊接导致的热应力失效:焊接是MLCC焊盘承受热冲击比较严重的情况,此时会出现焊接导致的热应力失效。主要由于器件在焊接(特别是波峰焊)时承受温度冲击所致,不当返修也是导致温度冲击裂纹的重要原因。 3、应用不当因素 温度过高:MLCC工作环境温度过高时,导致电容值下降、漏电流增大等现象。 电压过高:MLCC的额定工作电压是在一定条件下得出的,超过额定电压使用会使电容器内部的电场强度增大,导致介质击穿。 频率过高:当频率过高时,电容器的阻抗会减小,导致电流过大,使电容器发热严重,甚至烧毁。并且高频下电容器的介质损耗也会增大,降低电容器的使用寿命。 机械应力:MLCC在安装和使用过程中受到机械应力(如振动、冲击等)作用时,可能导致电容器内部的电极断裂、介质破碎等现象。MLCC抵抗弯曲能力比较差,在器件组装过程中(如贴片对中、工艺过程中电路板操作、流转过程中的人、设备、重力等因素、通孔元器件插入、电路测试、单板分割、电路板安装、电路板定位铆接、螺丝安装等操作)任何可能产生弯曲变形的操作都可能导致器件开裂。这种裂纹一般起源于器件上下金属化端,沿一定方向扩展。 湿度和腐蚀性环境:湿度过高可能使电容器内部的介质吸湿,导致电容值下降;腐蚀性环境可能腐蚀电容器内部的电极和介质,使电容器失效。 失效分析流程与方法: 1、电特性测试:使用LCR电桥进行容值和DF值的测试,使用绝缘测试仪测试绝缘耐压,通常MLCC失效样品以短路为主。 2、外观检查:通常进行6面检查,检查是否有明显的异常。 3、故障点粗定位:使用Thermal进行故障点定位,如果没有该步骤直接进入到步骤4也可,但通过故障点粗定位可以大致了解故障点位置,以便清楚的掌握切片观察的位置。 4、制样切片,缺陷观察:本文将介绍最常见的集中典型的故障形貌。 1)“EOS过电形貌”:通常是点失效,会伴随着二次损伤导致分层或者裂纹 案例1:点击穿短路,由点向两侧延伸 案例2:点击穿短路,发热导致发生二次损伤,形成介质分层形貌 怎么判断是过电压还是物料缺陷导致的“EOS”:对于MLCC来说,发生电击穿除了与电场强度有关外,还与其内部电极的边缘电场畸变有更为直接的关系。在MLCC的内部,电场分布情况见下左图所示。在A、B两点的左侧,邻近的两个金属电极平行相对,是典型的平板电容器结构,内部分布着均匀电场E1;在A、B两点的右侧,上面一层是短电极,金属电极层在A点被陶瓷介质阻断,与相邻外电极CD不相连,下面一层金属长电极与外电极在C点紧密连接,这种长短不齐的结构造成了电场畸变,使之在ABCD区域内为非均匀电场。在陶瓷介质中取两个柱形高斯闭合面,详见下右图。 两个柱状高斯闭合面一个是在均匀电场内的长方形柱体,另一个是在非均匀电场但与均匀电场交界的梯形柱体。两个柱体的上下底面均与金属电极平行,下底S4、S5取在金属电极层内,上底S1、S2取在陶瓷介质中并靠近金属电极层。设金属电极层内的电荷密度均为σ。 对于均匀电场内的长方体柱体,在金属下电极层内E=0、D=0(注:D代表电位移矢量),故S5上无通量;侧壁可视作电力管,与电力线平行,也无通量,唯一有通量的是在S1面。则包围在此闭合高斯面内的自由电荷Q1=σ*S5,它分布在短电极下侧的表面上,按照有介质时的高斯定理: ΦSD1dS=Q1=σ*S5=D1S1 (1) 式中D1为均匀电场E1中的电位移矢量。 同理,对于非均匀电场内的梯形柱体,在金属下电极层内E=0、D=0,故S4上无通量;侧壁亦可视作电力管,与电力线平行,也无通量,只有在S2面上有通量,包围在此闭合高斯面内的自由电荷Q2=σ*S4: ΦSD3dS=Q2=σ*S4 (2) 式中D3为均匀电场E3中的电位移矢量,当S2中的边长b取足够小,则D3可近似为均匀,同时考虑到D3与S2的外法线方向存在夹角θ,则有: ΦSD3dS=D3S2cosθ=Q2=σ*S4 (3) 如令S4=S5,由于金属电极内的电荷密度σ处处相等,则Q1=Q2,则有: D1S1= D3S2cosθ (4) 根据电位移矢量公式D=εE,则有: E1S1= E3S2cosθ→S1/S2= E3*cosθ/E1= E2/E1 (5) 因为b足够小,S2很小,因此S1/S2>>1,可得出E2>>E1。说明在A点的电场强度E2远大于均匀电场E1。上述分析仅针对下电极BC段,其实外电极CD段的E4对E2方向上的电场强度也有贡献,所以A点的实际电场强度比所分析的E2还要强。 所以,如果是过电压导致的失效,故障点基本上是发生在A点,故障复现验证结果可以佐证,详见下图。 注:通过此理论,可以对故障可能原因进行一个初步的判断。2)机械应力导致的失效形貌案例1:最常见的MLCC机械应力失效,通常为典型的45°裂纹。案例2:撞件导致MLCC失效。

    01-13 545浏览
  • 为什么PCB要把过孔堵上? 不堵会怎么样?

    导电孔Via hole又名导通孔,为了达到客户要求,线路板导通孔一般需要塞孔,经过大量的实践,改变传统的铝片塞孔工艺,用白网完成线路板板面阻焊与塞孔。生产稳定,质量可靠。 Via hole导通孔起线路互相连结导通的作用,电子行业的发展,同时也促进PCB的发展,也对印制板制作工艺和表面贴装技术提出更高要求。Via hole塞孔工艺应运而生,同时应满足下列要求: (一)导通孔内有铜即可,阻焊可塞可不塞; (二)导通孔内必须有锡铅,有一定的厚度要求(4微米),不得有阻焊油墨入孔,造成孔内藏锡珠; (三)导通孔必须有阻焊油墨塞孔,不透光,不得有锡圈,锡珠以及平整等要求。 随着电子产品向“轻、薄、短、小”方向发展,PCB也向高密度、高难度发展,因此出现大量SMT、BGA的PCB,而客户在贴装元器件时要求塞孔,主要有五个作用: (一)防止PCB过波峰焊时锡从导通孔贯穿元件面造成短路;特别是我们把过孔放在BGA焊盘上时,就必须先做塞孔,再镀金处理,便于BGA的焊接。 (二)避免助焊剂残留在导通孔内; (三)电子厂表面贴装以及元件装配完成后PCB在测试机上要吸真空形成负压才完成:(四)防止表面锡膏流入孔内造成虚焊,影响贴装;(五)防止过波峰焊时锡珠弹出,造成短路。 导电孔塞孔工艺的实现 对于表面贴装板,尤其是BGA及IC的贴装对导通孔塞孔要求必须平整,凸凹正负1mil,不得有导通孔边缘发红上锡;导通孔藏锡珠,为了达到客户的要求,导通孔塞孔工艺可谓五花八门,工艺流程特别长,过程控制难,时常有在热风整平及绿油耐焊锡实验时掉油;固化后爆油等问题发生。 现根据生产的实际条件,对PCB各种塞孔工艺进行归纳,在流程及优缺点作一些比较和阐述:注:热风整平的工作原理是利用热风将印制电路板表面及孔内多余焊料去掉,剩余焊料均匀覆在焊盘及无阻焊料线条及表面封装点上,是印制电路板表面处理的方式之一。 一 、热风整平后塞孔工艺 此工艺流程为:板面阻焊→HAL→塞孔→固化。采用非塞孔流程进行生产,热风整平后用铝片网版或者挡墨网来完成客户要求所有要塞的导通孔塞孔。塞孔油墨可用感光油墨或者热固性油墨,在保证湿膜颜色一致的情况下,塞孔油墨采用与板面相同油墨。此工艺流程能保证热风整平后导通孔不掉油,但是易造成塞孔油墨污染板面、不平整。客户在贴装时易造成虚焊(尤其BGA内)。所以许多客户不接受此方法。 二 、热风整平前塞孔工艺 2.1 用铝片塞孔、固化、磨板后进行图形转移 此工艺流程用数控钻床,钻出须塞孔的铝片,制成网版,进行塞孔,保证导通孔塞孔饱满,塞孔油墨塞孔油墨,也可用热固性油墨,其特点必须硬度大,树脂收缩变化小,与孔壁结合力好。工艺流程为:前处理→ 塞孔→磨板→图形转移→蚀刻→板面阻焊 。用此方法可以保证导通孔塞孔平整,热风整平不会有爆油、孔边掉油等质量问题,但此工艺要求性加厚铜,使此孔壁铜厚达到客户的标准,因此对整板镀铜要求很高,且对磨板机的性能也有很高的要求,确保铜面上的树脂等彻底去掉,铜面干净,不被污染。许多PCB厂没有性加厚铜工艺,以及设备的性能达不到要求,造成此工艺在PCB厂使用不多。 2.2 用铝片塞孔后直接丝印板面阻焊 此工艺流程用数控钻床,钻出须塞孔的铝片,制成网版,安装在丝印机上进行塞孔,完成塞孔后停放不得超过30分钟,用36T丝网直接丝印板面阻焊,工艺流程为:前处理——塞孔——丝印——预烘——曝光一显影——固化 用此工艺能保证导通孔盖油好,塞孔平整,湿膜颜色一致,热风整平后能保证导通孔不上锡,孔内不藏锡珠,但容易造成固化后孔内油墨上焊盘,造成可焊性不良;热风整平后导通孔边缘起泡掉油,采用此工艺方法生产控制比较困难,须工艺工程人员采用特殊的流程及参数才能确保塞孔质量。 2.3 铝片塞孔、显影、预固化、磨板后进行板面阻焊 用数控钻床,钻出要求塞孔的铝片,制成网版,安装在移位丝印机上进行塞孔,塞孔必须饱满,两边突出为佳,再经过固化,磨板进行板面处理,其工艺流程为:前处理——塞孔一预烘——显影——预固化——板面阻焊由于此工艺采用塞孔固化能保证HAL后过孔不掉油、爆油,但HAL后,过孔藏锡珠和导通孔上锡难以完全解决,所以许多客户不接收。 2.4 板面阻焊与塞孔同时完成 此方法采用36T(43T)的丝网,安装在丝印机上,采用垫板或者钉床,在完成板面的同时,将所有的导通孔塞住,其工艺流程为:前处理--丝印--预烘--曝光--显影--固化此工艺流程时间短,设备的利用率高,能保证热风整平后过孔不掉油、导通孔不上锡,但是由于采用丝印进行塞孔,在过孔内存着大量空气,在固化时,空气膨胀,冲破阻焊膜,造成空洞,不平整,热风整平会有少量导通孔藏锡。目前,我公司经过大量的实验,选择不同型号的油墨及粘度,调整丝印的压力等,基本上解决了过孔空洞和不平整,已采用此工艺批量生产。

    01-13 529浏览
  • 用料很扎实!拆解BYD腾势7KW充电桩

    外观长这样,长长的,类似面包 7KW充电枪,腾势的LOGO,充电枪的质感不错拆开后面盖板: 拆开顶部面盖,粘的还真牢靠,费了老大的劲了卡扣还挺多,里面电路板一览无余刷卡小板正反面 灯板: 4G模块:主控板: 整个充电桩无论是材质还是电子器件用料还是不错的,质感很扎实!

    01-03 53浏览
  • 回流焊中常见的锡珠现象

    本文对回流焊中常见的锡珠现象的成因进行了分析并提出解决方法。 1 概述 锡珠是回流焊中经常出现的缺陷。锡珠多数分布在无引脚的片式元件两侧,大小不一且独立存在,不与其它焊点连接,见图?。锡珠的存在,不仅影响产品的外观,更重要的是会影响产品的电气性能,或者给电子设备造成隐患。锡珠生成的原因是多方面的,既可能是焊料原因,也可能是工具或操作等原因造成,下面将一一讨论。 2 锡珠的成因及解决办法 (1)原因一:模版开口不合适。钢网开口太大,或由于模版开口形状不合适,导致贴放片式元件时锡膏漫延至焊盘之外,都会致使回流焊中锡珠生成。 解决方法如下。 ①开口尺寸。一般来说,片式阻容元件的模版开口尺寸应略小于相应的印制板焊盘,特别是利用?文件制作的模版,应考虑到线路板一定的蚀刻量,所以此类焊盘的模版开口一般可开为印制板焊盘的90%~95%。 ②开口形状。灵活地选择阻容元件的模版开口形状,可有效地减少或避免锡膏量过多而被挤压出来的情况,图?是几种模版开口形状,制作模版时可以选择其中一种作为阻容元件的开口,这样既可确保焊接锡膏用量,又能有效地防止锡珠形成。 (2)原因二:对位不准。模版与印制板对位应准确且印制板及模版应固定完好,使印锡膏过程模版与印制板保持一致,因为对位不正也会造成锡膏漫延。 解决方法:印刷锡膏分为手工、半自动和全自动。即使是全自动印刷,其压力、速度、间隙等仍需要人工设定。所以不管用何种方法,都必须调整好机器、模版、印制板、刮刀四者的关系,确保印刷质量。 顺便说一下,印锡膏是整个贴片装配过程的前道工序,其对整机贴片焊接来说影响很大,因印刷不良造成的缺陷率远高于其它过程造成的缺陷率,所以印锡膏工艺切不可轻视。 (3)原因三:锡膏使用不当。冷藏的锡膏升温时间不足,搅拌不当,会使锡膏吸湿,导致高温回流焊时水汽挥发致锡珠生成。 解决办法:由于锡膏的有效期较短,一般使用前都是低温存放的,使用时,必须将锡膏恢复至室温后再开盖(通常要求4小时左右),并进行均匀搅拌后方可使用,急于求成必将适得其反。 (4)原因四:温度曲线不当。回流焊中升温及预热时间不足,锡膏中溶剂没有足够地挥发,高温焊接时因温度的迅速上升导致溶剂飞溅带出的锡膏冷却后成锡珠。 解决方法:回流焊工艺的重要参数就是温度曲线,温度曲线分为四个阶段:预热、保温、回流、冷却,其中预热及保温过程,可减少元件及印制板遭受热冲击,并确保锡膏中的溶剂能部分挥发,若温度不足或保温时间太短,都会影响最终的焊接质量,一般保温的过程为150℃~160℃,70s~90s。 回流焊每次使用前都要调整好温度曲线,确保焊接过程处于良好的工作状态。 (5)原因五:残余锡膏。一般生产过程中特别是在调整模版时,都有一些印制板需要重新印锡膏,那么原来的锡膏必须清除干净,否则残余的锡膏最终会影响锡珠,甚至更严重的质量问题。 解决方法:仔细刮去板上的锡膏,特别要注意不让锡膏流入插件孔内导致塞孔,然后用溶剂清洗干净,若难以清除干净,可将板在有溶剂的超声波清洗机中清洗1分钟左右,可有效地去除板上残余锡膏。 3已形成的锡珠的清除方法 锡珠,由于有其它如助焊剂存在,所以能附着在板上,所以当锡珠无法人工一一去除时,可用锡膏对应的清洗剂对板件进行刷洗,用超声波清洗效果更好,一般来说经过清洗后锡珠可完全去除。 SMT 焊盘设计中的关键技术 夏滔 摘要: 摘要表面贴装技术(SMT)焊盘的设计原理、工艺及存在的实质性问题容易引起误差,总结了SMT印刷电路板常见的影响焊盘设计质量的误差,指出了一些需要特别注意的问题。为相关设计人员提供参考。 SMT 代表表面贴装技术,这是第四代电子贴装技术。它在二十世纪八十年代才进入中国的工业市场,给市场带来了一定程度上的进步与活力。因为这项技术的制作成本较低,占据的空间小,再加上它的可靠性比较高,所以电子工业中它的应用越来越广泛,也越来越普遍了。但每一件事都有利有弊,即便这是项新技术,也是如此。所以本文分析了有关该技术的一些问题,希望对今后的研究有所帮助。 一、概述 贴片图形设计是 PCB 设计的关键部分。它的作用较为明显,即可以决定设备元件在焊盘上应该放置的位置,同时它可以判断焊盘的焊点是否可靠,焊接过程是否会出现危险或缺陷,以及它对焊盘的清洗方面和维修方面都有着一定的重要作用。此外,它对于焊盘的可测试性也有着一定的帮助。焊盘的平面设计是决定表面装配工艺性的关键因素之一。然而,不同规格、不同结构的 SMC/SMD 表面贴装元件,制造商也实现了同一元件的功能,其包装形式也可能不同,对于给定的包装类别,其尺寸有一些不同。由于制造商的不同,使得焊头的宽度尺寸是最重要的,再加上尺寸公差有很多限制,所以焊接板的图形设计非常复杂。因此,我们制定并建立了自己的内部规范,通过对焊盘图形设计的有效控制,以此来降低设计图纸的复杂程度,提高焊点的准确性。表面装配垫的设计与表面装配中对合适零件的选择及焊接工艺方法都有着密切的联系。正确的衬垫应该和所选零件的尺寸相合,并可用于与不同制造商略有不同的零件。它能适应不同的工艺,最大限度地满足布置和布线的要求。 二、焊盘圈形设计中的关键技术 (一)表面组件的选择与焊盘的设计之间的关系 选择合适的元器件的原则是在保证元器件的功能和性能得到满足的基础上,保证所选的零件符合系统和电路的原理,还遵守了装配工艺形式的要求。此外,选择合适的供货商提供元器件,要确保供货商的数量最好一定,不要每一次都改变供货商。这样做,可以在一定程度上减少平面设计存在的一些误差,以至于增加了设计的复杂度。毕竟,不一样的元器件,在设计时需要考虑的因素也不一样。 (二)矩形无源元件焊盘图形设计 不同的元件,其构件的数据不同,采用的焊接技术也不能相同,要有所区别。因此,对于无源元件来说,最好的焊接工艺就是波峰焊和回流焊这两种焊接方式。又由于不一样的焊接方法和工艺,它们焊接时的热量分布也不一样,不同工艺的焊盘图形尺寸也不同,所以,为了更加地优化焊接图形,就需要更好地了解焊接图形的设计。不过最主要的原因其实是,元件在焊接过程中,很容易出现移动和直立。不过,这样的问题,在采用波峰焊这种方式时,由于采用了粘合剂,所以元件的这些问题出现的几率并不频繁。因此,为回流焊设计的最佳焊盘模式适用于波峰焊。显然,矩形元件焊盘在波峰焊和回流焊工艺中的图形设计是可取的。 (三)SOIC、PLCC 焊盘圆形分析 在过去,SOIC、PLCC 和 QFP 元件的焊盘图案都是矩形的。圆形焊接是印刷电路生产的一种良好选择。主要原因如下 :( 首先改善 PCB 表面的食品 / 铅焊接层的平面厚度;其次离子污染少,边角树枝状突性生长减少;最后是焊盘间线路更紧密。 三、设计印制板时与埠盘的关键 (1)对称性。自行设计衬垫时,应严格保持对称使用的衬垫,即衬垫的形状和尺寸应完全相同,图形的位置应完全对称。(2)CAD 系统。设计焊盘图形时最好以 CAD 系统中的焊盘和线条为元素来没计。这样,如果以后图形需要一些改进,也可以根据现有的依据进行再编辑。(3)标志。一般来讲,焊盘内是不能存在一些带有字符或者是图像的标志的,所以,如果需要印刻上标志的话,标志符号的位置必须保证它离焊盘的边缘有一段距离,最好大于 0.5mm。除此之外,如果有焊盘没有外引器件,那么就要确定它的媒盘之间不存在通孔,这样才能保证清洗时焊盘的质量不出问题。(4)引脚。对于每个元器件必须正确标注所有引脚的顺序号,以免引线接脚混淆。同时,对于距离引脚中心 0.65mm,或者大于此距离的其他细间距元件,最好在焊盘图形的对角线方向上面,增加两个用于光学定位的标志,对称的裸铜标志就可以。这样可以大大减少问题的出现,是整个设备的质量得到保证。 四、注意问题 (一)印刷板 在 PCB 板上,需要保留导电图案 ( 如互连线、接地线、相互导体等 ),并且使用的还要是裸铜箔,不要用其他的材料。这就代表着,由于金属镀层和熔点是低于焊接温度的,因此,涂层不应该允许避免开裂或起皱的焊接电阻镀膜的网站,以保证 PCB 板的焊接质量和外观。 (二)查选资料 检查或调用焊盘尺寸图形数据时,一定要选择与自己组件的各项数据都符合的尺寸,还要保证它们互相匹配。工作人员需要克服面对数据分析时,不经过分析比较就直接在软件库中进行复制。以及直接使用 pad 现有的图形这种不良习惯,也是需要改正的。除了这些,在焊盘图形尺寸进行设计、检查或调用时,有必要区分您选择的组件及其代码,焊接相关尺寸等。 五、结束语 SMT 衬垫设计实际说来并不是高尖端的技术,因此存在的设计问题就很容易被设计人员忽视,如果不认真对待,会使投入的资金出现不必要的流失,同时如果重新进行制作就会浪费更多的时间,并不值得。因此,在设计 SMT 印制电路板时,必须充分注意以上几点,确保设计的印制电路板能够满足 SMT 生产工艺的要求,保证焊接产品的质量。为了使印刷板达到最好的性能,我们必须重视它。  

    2024-11-22 151浏览
  • PCB板的弯曲或翘曲是如何形成的?如何改善?

    PCB板的弯曲或翘曲是由多种因素共同作用导致的。

    2024-11-11 578浏览
  • PCBA的质量怎么样?常用的14种测试方法

    如果PCB或者PCBA存在缺陷或制造问题,则可能导致最终产品出现故障并造成不便。

    2024-09-26 863浏览
  • PCB设计的基本流程

    PCB板设计的10个基本设计流程

    2024-09-13 1017浏览
  • PCB的结构组成

    1、PCB的结构组成 2、PCB的内部结构 3、PCB层的分类 4、常用层的功能1)信号层:分为TopLayer(顶层)和BottomLayer(底层),可以进行布线和摆放元器件。2)Mechanical(机械层),不具有电气属性,是定义整个PCB板的外观,可以用于绘制外壳尺寸,核对电路板安装,机械层最多可选择16层。3)Top Overlay(顶层丝印层)、 Bottom Overlay(底层丝印层),用于定义顶层和底层的丝印字符,采用丝网印刷工艺涂印,可以作为装配图、注释标记、LOGO。局部覆盖可以增加绝缘性。4)锡膏层包括顶层锡膏层(Top Paste) 和底层锡膏层(Bottom Paste),是露在外面的表面贴装焊盘,也就是在焊接前需要涂焊膏的部分。划线部分为钢网刻孔部分,用于SMT工艺刷锡浆,大电流导线可以用Solder层裸露并加Paste锡浆加厚。5)阻焊层也就是常说的“开窗”,包括顶层阻焊层(TopSolder)和底层阻焊层(BottomSolder),其作用与锡膏层相反,指的是要盖绿油的层。放置在电路板上以保护铜在操作过程中免受氧化和短路,它还可以保护 PCB 免受环境影响。6)钻孔层包括DrillGride(钻孔指示图)和DrillDrawing(钻孔图)两个钻孔层,钻孔层用于提供电路板制造过程中的钻孔信息(如焊盘,过孔就需要钻孔)。7)禁止布线层(KeepOutLayer)是定义电路板的边界、切割线、还有电路板的挖空、开槽位置。定义不允许放置导线的区域,会自动避开。8)MulTI layer(多层),电路板上焊盘和穿透式过孔要穿透整个电路板,与不同的导电图形层建立电气连接关系,因此系统专门设置了一个抽象的层—多层。多层上画的实体在每个Layer都有(Plane除外),常用于直插焊盘、过孔等需要穿透每个层,用于焊盘时,可定义电镀孔(PTH)和非电镀孔(NPTH)。5、元件和封装1)元件符号与封装 同一个电路符号(Part),往往对应多个封装(FootPrint)同一个封装,因为安装形式不同(如:立/卧),衍生出若干子封装设计时仔细核对:(1)封装尺寸/形式是否正确;(2)管脚顺序是否相符2)PCB焊盘设计基本原则对称性:两端焊盘必须对称,才能保证熔融焊锡表面张力平衡。焊盘间距:确保元件端头或引脚与焊盘恰当的搭接尺寸,焊盘间距过大或过小都会引起焊接缺陷。焊盘剩余尺寸:元件端头或引脚与焊盘搭接后的剩余尺寸必须保证焊点能够形成弯月面。焊盘宽度:应与元件端头或引脚的宽度基本一致。 6)PCB工艺 曝光能力和腐蚀的扩散效应,限制了最小线宽电镀孔工艺,限制了过孔/焊盘的最小内径(PCB越厚,孔径越大)层间对准误差、钻孔位置误差,限制了焊盘、过孔的最小外径 腐蚀工艺的洁净度,限制了导线间的最小间距特殊新工艺,如激光钻孔、沉积板,能够达到2mil极限,但是价格昂贵极限值:通过苛刻的条件能达到,但不宜大批量生产。一般值:可以大批量生产,但需要特殊工艺保证良品率,要收取额外的工艺费和测试费,会增加成本和交货周期;可靠值:可以大批量可靠生产。【仅供参考,以厂家沟通为准!】多层PCB内部长啥样? 3D大图解析高端PCB板的设计工艺硬件工程师刚接触多层PCB的时候,很容易看晕。动辄十层八层的,线路像蜘蛛网一样。 今天画了几张多层PCB电路板内部结构图,用立体图形展示各种叠层结构的PCB图内部架构。 01 高密度互联板(HDI)的核心 在过孔 多层PCB的线路加工,和单层双层没什么区别,最大的不同在过孔的工艺上。 线路都是蚀刻出来的,过孔都是钻孔再镀铜出来的,这些做硬件开发的大家都懂,就不赘述了。 多层电路板,通常有通孔板、一阶板、二阶板、二阶叠孔板这几种。更高阶的如三阶板、任意层互联板平时用的非常少,价格贼贵,先不多讨论。 一般情况下,8位单片机产品用2层通孔板;32位单片机级别的智能硬件,使用4层-6层通孔板;Linux和Android级别的智能硬件,使用6层通孔至8一阶HDI板;智能手机这样的紧凑产品,一般用8层一阶到10层2阶电路板。 8层2阶叠孔,高通骁龙624 02 最常见的通孔 只有一种过孔,从第一层打到最后一层。不管是外部的线路还是内部的线路,孔都是打穿的,叫做通孔板。 通孔板和层数没关系,平时大家用的2层的都是通孔板,而很多交换机和军工电路板,做20层,还是通孔的。 用钻头把电路板钻穿,然后在孔里镀铜,形成通路。 这里要注意,通孔内径通常有0.2mm、0.25mm和0.3mm,但一般0.2mm的要比0.3mm的贵不少。因为钻头太细容易断,钻的也慢一些。多耗费的时间和钻头的费用,就体现在电路板价格上升上了。 03 高密度板(HDI板)的激光孔 这张图是6层1阶HDI板的叠层结构图,表面两层都是激光孔,0.1mm内径。内层是机械孔,相当于一个4层通孔板,外面再覆盖2层。 激光只能打穿玻璃纤维的板材,不能打穿金属的铜。所以外表面打孔不会影响到内部的其他线路。 激光打了孔之后,再去镀铜,就形成了激光过孔。 04 2阶HDI板 两层激光孔 这张图是一个6层2阶错孔HDI板。平时大家用6层2阶的少,大多是8层2阶起。这里更多层数,跟6层是一样的道理。 所谓2阶,就是有2层激光孔。 所谓错孔,就是两层激光孔是错开的。 为什么要错开呢?因为镀铜镀不满,孔里面是空的,所以不能直接在上面再打孔,要错开一定的距离,再打上一层的空。 6层二阶=4层1阶外面再加2层。 8层二阶=6层1阶外面再加2层。 05 叠孔板 工艺复杂价格更高 错孔板的两层激光孔重叠在一起。线路会更紧凑。 需要把内层激光孔电镀填平,然后在做外层激光孔。价格比错孔更贵一些。 06 超贵的任意层互联板 多层激光叠孔 就是每一层都是激光孔,每一层都可以连接在一起。想怎么走线就怎么走线,想怎么打孔就怎么打孔。 Layout工程师想想就觉得爽!再也不怕画不出来了! 采购想想就想哭,比普通的通孔板贵10倍以上! 所以,也就只有iPhone这样的产品舍得用了。其他手机品牌,没听说谁用过任意层互联板。 07 总结 最后放张图,再仔细对比一下吧。 请注意观察孔的大小,以及孔的焊盘是封闭的还是开放的。 五大SMT常见工艺缺陷及解决方法 现在,工程师做SMT贴片已经越来越方便,但是,对SMT中的各项工艺,作为工程师的你真的了解“透”了吗?本文整理了“五大SMT常见工艺缺陷”,帮你填坑,速速get吧! 缺陷一: “立碑”现象 即片式元器件发生“竖立”。 立碑现象发生主要原因是元件两端的湿润力不平衡,引发元件两端的力矩也不平衡,导致“立碑”。 回流焊“立碑”现象动态图(来源网络) 什么情况会导致回流焊时元件两端湿润力不平衡,导致“立碑”? 因素A:焊盘设计与布局不合理 ①元件的两边焊盘之一与地线相连接或有一侧焊盘面积过大,焊盘两端热容量不均匀; ②PCB表面各处的温差过大以致元件焊盘两边吸热不均匀; ③大型器件QFP、BGA、散热器周围的小型片式元件焊盘两端会出现温度不均匀。 解决办法:工程师调整焊盘设计和布局。 因素B:焊锡膏与焊锡膏印刷存在问题 ①焊锡膏的活性不高或元件的可焊性差,焊锡膏熔化后,表面张力不一样,将引起焊盘湿润力不平衡。 ②两焊盘的焊锡膏印刷量不均匀,一侧锡厚,拉力大,另一侧锡薄拉力小,致使元件一端被拉向一侧形成空焊,一端被拉起就形成立碑。 解决办法:需要工厂选用活性较高的焊锡膏,改善焊锡膏印刷参数,特别是钢网的窗口尺寸。 因素C:贴片移位Z轴方向受力不均匀 会导致元件浸入到焊锡膏中的深度不均匀,熔化时会因时间差而导致两边的湿润力不平衡,如果元件贴片移位会直接导致立碑。 解决办法:需要工厂调节贴片机工艺参数。 因素D:炉温曲线不正确 如果再流焊炉炉体过短和温区太少就会造成对PCB加热的工作曲线不正确,以致板面上湿差过大,从而造成湿润力不平衡。 解决办法:需要工厂根据每种不同产品调节好适当的温度曲线。 缺陷二: 锡珠 锡珠是回流焊中常见的缺陷之一,它不仅影响外观而且会引起桥接。锡珠可分为两类:一类出现在片式元器件一侧,常为一个独立的大球状(如下图);另一类出现在IC引脚四周,呈分散的小珠状。 位于元器件腰部一侧(来源网络) 锡珠产生的原因主要有以下几点: 因素A:温度曲线不正确 回流焊曲线可以分为预热、保温、回流和冷却4个区段。预热、保温的目的是为了使PCB表面温度在60~90s内升到150℃,并保温约90s,这不仅可以降低PCB及元件的热冲击,更主要是确保焊锡膏的溶剂能部分挥发,避免回流焊时因溶剂太多引起飞溅,造成焊锡膏冲出焊盘而形成锡珠。 解决办法:工厂需注意升温速率,并采取适中的预热,使溶剂充分挥发。 因素B:焊锡膏的质量 ①焊锡膏中金属含量通常在(90±0.5)℅,金属含量过低会导致助焊剂成分过多,因此过多的助焊剂会因预热阶段不易挥发而引起飞珠; ②焊锡膏中水蒸气和氧含量增加也会引起飞珠。由于焊锡膏通常冷藏,当从冰箱中取出时,如果没有充分回温解冻并搅拌均匀,将会导致水蒸气进入;此外焊锡膏瓶的盖子每次使用后要盖紧,若没有及时盖严,也会导致水蒸气的进入; ③放在钢网上印制的焊锡膏在完工后,剩余的部分应另行处理,若再放回原来瓶中,会引起瓶中焊锡膏变质,也会产生锡珠。 解决办法:要求工厂选择优质的焊锡膏,注意焊锡膏的保管与使用要求。 其他因素还有: ①印刷太厚,元件下压后多余锡膏溢流; ②贴片压力太大,下压使锡膏塌陷到油墨上; ③焊盘开口外形不好,未做防锡珠处理; ④锡膏活性不好,干的太快,或有太多颗粒小的锡粉; ⑤印刷偏移,使部分锡膏沾到PCB上; ⑥刮刀速度过快,引起塌边不良,回流后导致产生锡球... 缺陷三: 桥连 桥连也是SMT生产中常见的缺陷之一,它会引起元件之间的短路,遇到桥连必须返修。 BGA桥连示意图(来源网络) 造成桥连的原因主要有: 因素A:焊锡膏的质量问题 ①焊锡膏中金属含量偏高,特别是印刷时间过久,易出现金属含量增高,导致IC引脚桥连; ②焊锡膏粘度低,预热后漫流到焊盘外; ③焊锡膏塔落度差,预热后漫流到焊盘外。 解决办法:需要工厂调整焊锡膏配比或改用质量好的焊锡膏。 因素B:印刷系统 ①印刷机重复精度差,对位不齐(钢网对位不准、PCB对位不准),导致焊锡膏印刷到焊盘外,尤其是细间距QFP焊盘; ②钢网窗口尺寸与厚度设计失准以及PCB焊盘设计Sn-pb合金镀层不均匀,导致焊锡膏偏多。 解决方法:需要工厂调整印刷机,改善PCB焊盘涂覆层。 因素C:贴放压力过大 焊锡膏受压后满流是生产中多见的原因,另外贴片精度不够会使元件出现移位、IC引脚变形等。 因素D:再流焊炉升温速度过快,焊锡膏中溶剂来不及挥发 解决办法:需要工厂调整贴片机Z轴高度及再流焊炉升温速度。 缺陷四: 芯吸现象 芯吸现象,也称吸料现象、抽芯现象,是SMT常见的焊接缺陷之一,多见于气相回流焊中。焊料脱离焊盘沿引脚上行到引脚与芯片本体之间,导致严重的虚焊现象。 产生原因: 通常是因引脚导热率过大,升温迅速,以致焊料优先湿润引脚,焊料与引脚之间的润湿力远大于焊料与焊盘之间的润湿力,引脚的上翘回更会加剧芯吸现象的发生。   解决办法:需要工厂先对SMA(表面贴装组件)充分预热后在放炉中焊接,应认真的检测和保证PCB焊盘的可焊性,元件的共面性不可忽视,对共面性不好的器件不应用于生产。 注意: 在红外回流焊中,PCB基材与焊料中的有机助焊剂是红外线良好的吸收介质,而引脚却能部分反射红外线,故相比而言焊料优先熔化,焊料与焊盘的湿润力就会大于焊料与引脚之间的湿润力,故焊料不会沿引脚上升,从而发生芯吸现象的概率就小得多。 缺陷五: BGA焊接不良 BGA:即Ball Grid Array(球栅阵列封装) 正常的BGA焊接(来源网络) 不良症状①:连锡 连锡也被称为短路,即锡球与锡球在焊接过程中发生短接,导致两个焊盘相连,造成短路。 解决办法:工厂调整温度曲线,减小回流气压,提高印刷品质。 红圈部分为连锡(来源网络) 不良症状②:假焊 假焊也被称为“枕头效应(Head-in-Pillow,HIP)”,导致假焊的原因很多(锡球或PAD氧化、炉内温度不足、PCB变形、锡膏活性较差等)。BGA假焊特点是“不易发现”“难识别”。 BGA假焊示意图(来源网络) BGA“枕头效应”侧视图(来源网络) 不良症状③:冷焊 冷焊不完全等同与假焊,冷焊是由于回流焊温度异常导致锡膏没有熔化完整,可能是温度没有达到锡膏的熔点或者回流区的回流时间不足导致。 解决办法:工厂调整温度曲线,冷却过程中,减少振动。 BGA冷焊示意图(来源网络) 不良症状④:气泡 气泡(或称气孔)并非绝对的不良现象,但如果气泡过大,易导致品质问题,气泡的允收都有IPC标准。气泡主要是由盲孔内藏的空气在焊接过程中没有及时排出导致。 解决方法:要求工厂用X-Ray检查原材料内部有无孔隙,调整温度曲线。 BGA气泡示意图(来源网络) 一般说来,气泡大小不能超过球体20% 不良症状⑤:锡球开裂 不良症状⑥:脏污 焊盘脏污或者有残留异物,可能因生产过程中环境保护不力导致焊盘上有异物或者焊盘脏污导致焊接不良。 除上面几点外,还有: ①结晶破裂(焊点表面呈玻璃裂痕状态); ②偏移(BGA焊点与PCB焊盘错位); ③溅锡(在PCB表面有微小的锡球靠近或介于两焊点间)等。

    2024-09-13 1025浏览
正在努力加载更多...
广告