什么是地弹
ARM与嵌入式','ARM与嵌入式 2024-02-20

什么是地弹

1 地弹的概念 地弹、振铃、串扰、信号反射······这几个在信号完整性分析中是分析的重点对象。初学者一看:好高深! 其实,感觉高深是因为你满天听到“地弹”二字,却到处找不到“地弹的真正原理”。 如果你认真读笔者的“噪声的起源”章节,其实你已经认识了地弹! 地弹,就是地噪声! 

2 为何叫地弹 既然是地噪声,为啥叫“地弹”?为什么既然是一样的东西,却换了个名称,害的我苦苦思索不得其解。 低频时,地噪声主要是因为构成地线的导体有“电阻”,电路系统的电流都要流经地线而产生的电势差波动。 高频时,地噪声主要是因为构成地线的导体有“电感”,电路系统的电流快速变化地经过这个“电感”时,“电感”两端激发出更强的电压扰动,形象的称为“地弹”。 地弹,一般对IC而言。因为芯片内部的“电路地”和芯片的“地引脚”实际上是用一根很细很细的金线连接起来的,所以这个金线电感较大,所以可能会导致芯片内部电路的地和现实PCB的地有强烈的“电压差波动”——很强的地弹现象!这个地弹不像PCB板那样,可以通过增加去耦电容减弱。 假设你有一块B PCB板,一块A主板;B PCB板插在主板上使用。再假设A、B的地线连接点不够大,当A、B间有高速信号通讯时,B板上的“地平面”和A板上的“地平面”将有较大的“地间电压差波动”。这同样是一种PCB板上的“地弹效应”。 地弹其实是“地噪声”的别名而已,理解就好!

地弹形成的机理和危害 

本来不想写地弹的机理,感觉与“噪声的起源”重复了。但思来想去,感觉这么经典的问题,还是不怕多提几下,所以又写了下来。 

1 地弹形成的机理 如下图,红色框内代表数字电路。“噪声的起源”章节中已经讲述:当下图中S5在不断的向左右切换时,由于地线上E、A间的R14电阻的存在,E点将相对于A点产生电势差。在高频状态下,E、A电势差的主要起因不再是“E、A间的电阻”,而是“E、A间的电感”。 “E点的地”相对于“A点的地”的地噪声就是电路系统工作时的地弹现象。

2 地弹的危害 下图,也是“噪声的起源”章节的内容,地噪声(地弹)相当于在一个“拥有理想地”的电路中,被外部“输入地噪声”。 那么,假设E点上存在着1MHz的地噪声,这会有什么危害?

2.1 地噪声使所有信号线上出现噪声 由“地环路的危害”分析可知,假设上图中框内的数字模块有20根信号线,那么地噪声将直接反应在20根信号线上,从而影响这些信号的波形质量,并通过这20根信号线向外辐射。 

2.2 地弹使地线产生辐射 也许你会问:地线也会产生辐射? 也许你阅读了某些讲PCB布线的书籍上描述到:不正确的铺地将产生“地线辐射”,加重干扰!——但是你不明白其原理,甚至怀疑书本作者有没有写错! 那我告诉你,地线真有可能存在辐射! 下图是一个单面PCB板的布线示意图。蓝色线代表从E点连出来的地线,细长地走单独分布在PCB板边缘,不和任何电子模块连接。 由于该例子中,E点相对于A点存在1MHz的地噪声,那么整条蓝色的地线都相对于A点存在1MHz的噪声。而由于这条地线长长地拉在PCB板的边缘,这条线像一根发射天线那样(长长的形状、上面有1MHz的“将要发射的信号”),不断地发射“地噪声”。

如何减弱“PCB地弹效应” 

1 增加恰当的去耦电容 

实际上,为了减小1MHz对整个电路的干扰,我们在D、E点间加入去耦电容C7。如图示。那么,这个电容的作用是什么? 其等效电路分析如下(注意,该等效电路不是非常准确,但是能说出大致原理,精确的模型请读者在技术上进阶后自行思考分析): 由于C的容抗为:Zc=1/(2πfc),故对于电源和地的1MHz的噪声而言,等效为下图的R34。 由于R34的阻抗远远小于(R32 + R33 + R35),而“噪声信号源”(即:图中的数字电路模块)又有相当大的“内阻”,所以会产生2个效果:

  • “噪声信号源”的大部分能量将通过R34——因而大部分噪声能量通过图中的“(1)”环路构成较小的环流路径而消失掉,这部分能量虽然强,但是不会干扰“(1)”以外的电路;只有小部分能量“逃出”“(1)”环路,以较弱的能量干扰其他电路。
  • “噪声信号源”的1MHz方波干扰将不复存在,将被C7滤成图中实线表示的类似正弦波的变化平滑的波形。
这样的好处是:
  • 环路面积减小,高频的辐射能量减轻,EMC干扰将大大减小;
  • 方波干扰变成正弦波干扰,其高次谐波分量将大大减小,所以其干扰能力也大大减弱! 哈哈,太和谐了!

现在,你是否明白了:为什么数字芯片电源端一般要得接一个电源去耦电容?为什么很多讲PCB布线的书籍上都会出现“要添加电源去耦电容”?

2 用粗短的“地线” 

由于地线存在电阻、电感而产生地噪声。所以,我们要减小地线的“电阻、电感”。 当地线增大、长度减短时,其电阻和电感会减小,从而成功减小地噪声。这样,地弹将大大减小! 所以在PCB Layout布线时,能用粗的地线就不要用细的地线。能用短的地线就不要用长的地线。 注意:不要为了减短一点点地线而盲目地加长N倍的电源线,电源与地都是非常重要的,必须具体问题具体分析。所以还是那句——得注重原理,而不是具体的“减短地线”的做法。 

总结

  • 地弹,就是地噪声
  • 地弹使地线产生辐射
  • 增加恰当的去耦电容可减弱模块间的地弹效应
  • 注重原理,而不是具体的做法


声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 【7.24 深圳】2025国际AI+IoT生态发展大会/2025全球 MCU及嵌入式技术论坛


  • 相关技术文库
  • 元器件
  • 电阻
  • 电容
  • 电感
  • 想要了解检测技术?变压器局放检测不妨认识一下

    检测技术给我们带来了很多好处,而对于检测,自动化等专业的朋友或多或少有所了解。往期文章中,小编对CCD检测、电阻检测等均有所阐述。为增进大家对检测技术的认识,本文将介绍变压器局放检测技术。如果你对检测具...

    07-10
  • 电解电容如何检测?这些检测技巧教给你

    在往期文章中,小编对检测相关技术的讨论还是挺多的,譬如光敏电阻检测、机器视觉检测、电缆电器性能检测等等。但是,针对不同的应用对象,其检测技术往往有所不同。为帮助大家掌握更多的检测技术,本文就电解电容...

    07-10
  • 大牛带你看检测技术,电容器检测技术分析

    检测技术是各大行业都不可缺少的技术,检测的应用,能帮助发现系统、设备存在的一些隐性故障。通过检测,我们能够确保系统、设备的稳定性。为增进大家对检测的了解,本文将介绍电容器的一些检测技巧。如果你对检测...

    07-10
  • 一看就懂!动画讲解LC振荡器的工作原理

    电感器是由电线线圈组成的设备,包裹在磁性材料上...

    07-09
  • 滤波器有哪些分类?这些滤波器使用注意事项你都知道吗?

    滤波器的使用,使得特定频率的信号能够被过滤掉。在上篇滤波器文章中,小编对滤波器的主要参数有所阐述。为增进大家对滤波器的认识,本文将对滤波器的主要分类,以及滤波器的使用注意事项予以介绍。如果你对滤波器...

    07-09
  • ups电源有何注意事项?大佬教你如何维修ups电源

    ups电源是生活中的常用电源类型之一,对于ups电源,很多朋友其实都有所了解。为增进大家对ups电源的认识,本文将基于两点介绍ups电源:1.ups电源使用注意事项,2.ups电源维修技巧。如果你对ups电源具有兴趣,不妨继...

    07-09
  • 光耦使用经验贴,大佬传授光耦实用技巧

    光耦,也就是光耦合器,在电路中应用广泛。上篇文章中,小编介绍了光耦的技术参数,但这只是理论部分。如果想要掌握光耦的应用,还需自己动手尝试。为增进大家对光耦的认识,本文将介绍光耦的实用技巧。如果你对光...

    07-08
  • 如何维护逆变器?看看哪些因素将影响逆变器寿命

    逆变器无疑是工业应用中常用的转换器之一了,对于逆变器,我们或多或少具备一定的了解。为增进大家对逆变器的了解,本文将对影响逆变器寿命的因素予以介绍。如果你对逆变器相关内容具有兴趣,不妨同小编一起继续往...

    07-07
  • 射频电路仿真

    信息时代的到来极大地改变了人类社会的生产、生活、工作和学习方式。射频功率放大器不仅在通讯系统中得到广泛应用,还逐渐被应用于其他领域内。本文为一种新型射频导热治疗仪所设计的大功率射频放大器电路,满足工...

    07-04
  • dht11温湿度传感器工作原理

    DHT11为 4 针单排引脚封装,如下图,采用单线制串行接口,只需加适当的上拉电阻,信号传输距离可达20米以上,使其成为各类应用甚至最为苛刻的应用场合的最佳选则。 二.传感器参数 1.DHT11电气参数如下: 型号 测量...

    07-04
  • 绝对压力变送器的工作原理是什么?绝对压力变送器选型事项介绍

    压力变送器作为测量仪器,是工业中最常用的传感器之一。上篇文章中,小编对压力变送器的种类有所阐述。为增进大家对压力变送器的认识,本文将对绝对压力变送器、绝对压力变送器的原理以及选型予以介绍。如果你对压...

    07-03
下载排行榜
更多
评测报告
更多
广告