失效电子元器件诊断分析的一般程序
2021-04-08

器件一旦坏了,千万不要敬而远之,而应该如获至宝。

开车的人都知道,哪里最能练出驾驶水平?高速公路不行,只有闹市和不良路况才能提高水平。社会的发展就是一个发现问题解决问题的过程,出现问题不可怕,但频繁出现同一类问题是非常可怕的。


失效分析基本概念

定义:对失效电子元器件进行诊断过程。

1、进行失效分析往往需要进行电测量并采用先进的物理、冶金及化学的分析手段。

2、失效分析的目的是确定失效模式和失效机理,提出纠正措施,防止这种失效模式和失效机理的重复出现。

3、失效模式是指观察到的失效现象、失效形式,如开路、短路、参数漂移、功能失效等。

4、失效机理是指失效的物理化学过程,如疲劳、腐蚀和过应力等。


失效分析的一般程序

1、收集现场场数据

2、电测并确定失效模式

3、非破坏检查

4、打开封装

5、镜验

6、通电并进行失效定位

7、对失效部位进行物理、化学分析,确定失效机理。

8、综合分析,确定失效原因,提出纠正措施。


1、收集现场数据:

应力类型

试验方法

可能出现的主要失效模式

电应力

静电、过电、噪声

MOS器件的栅击穿、双极型器件的pn结击穿、功率晶体管的二次击穿、CMOS电路的闩锁效应

热应力

高温储存

金属-半导体接触的Al-Si互溶,欧姆接触退化,pn结漏电、Au-Al键合失效

低温应力

低温储存

芯片断裂

低温电应力

低温工作

热载流子注入

高低温应力

高低温循环

芯片断裂、芯片粘接失效

热电应力

高温工作

金属电迁移、欧姆接触退化

机械应力

振动、冲击、加速度

芯片断裂、引线断裂

辐射应力

X射线辐射、中子辐射

电参数变化、软错误、CMOS电路的闩锁效应

气候应力

高湿、盐雾

外引线腐蚀、金属化腐蚀、电参数漂移


2、电测并确定失效模式

电测失效可分为连接性失效、电参数失效和功能失效。

连接性失效包括开路、短路以及电阻值变化。这类失效容易测试,现场失效多数由静电放电(ESD)和过电应力(EOS)引起。


电参数失效,需进行较复杂的测量,主要表现形式有参数值超出规定范围(超差)和参数不稳定。


确认功能失效,需对元器件输入一个已知的激励信号,测量输出结果。如测得输出状态与预计状态相同,则元器件功能正常,否则为失效,功能测试主要用于集成电路。


三种失效有一定的相关性,即一种失效可能引起其它种类的失效。功能失效和电参数失效的根源时常可归结于连接性失效。在缺乏复杂功能测试设备和测试程序的情况下,有可能用简单的连接性测试和参数测试方法进行电测,结合物理失效分析技术的应用仍然可获得令人满意的失效分析结果。


3、非破坏检查


名称

应用优势

主要原理

X射线透视技术

以低密度区为背景,观察材料的高密度区的密度异常点

透视X光的被样品局部吸收后成象的异常

反射式扫描声学显微术(C-SAM)

以高密度区为背景,观察材料内部空隙或低密度区

超声波遇空隙受阻反射

X-Ray检测,即为在不破坏芯片情况下,利用X射线透视元器件(多方向及角度可选),检测元器件的封装情况,如气泡、邦定线异常,晶粒尺寸,支架方向等。


适用情境:检查邦定有无异常、封装有无缺陷、确认晶粒尺寸及layout

优势:工期短,直观易分析

劣势:获得信息有限

局限性:

1、相同批次的器件,不同封装生产线的器件内部形状略微不同;

2、内部线路损伤或缺陷很难检查出来,必须通过功能测试及其他试验获得。


案例分析:

X-Ray 探伤----气泡、邦定线

X-Ray 真伪鉴别----空包弹(图中可见,未有晶粒)

“徒有其表”

下面这个才是货真价实的

X-Ray用于产地分析(下图中同品牌同型号的芯片)

X-Ray 用于失效分析(PCB探伤、分析)

(下面这个密密麻麻的圆点就是BGA的锡珠。下图我们可以看出,这个芯片实际上是BGA二次封装的)


4、打开封装

开封方法有机械方法和化学方法两种,按封装材料来分类,微电子器件的封装种类包括玻璃封装(二极管)、金属壳封装、陶瓷封装、塑料封装等。Œ


机械开封

化学开封


5、显微形貌像技术

光学显微镜分析技术

扫描电子显微镜的二次电子像技术

电压效应的失效定位技术



6、半导体主要失效机理分析

电应力(EOD)损伤

静电放电(ESD)损伤

封装失效

引线键合失效

芯片粘接不良

金属半导体接触退化

钠离子沾污失效

氧化层针孔失效

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 元器件
  • 电阻
  • 电容
  • 电感
  • 电源电路中电容三种应用原理概念

    关于滤波电容、去耦电容、旁路电容作用及其原理 从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路

    前天
  • 二极管选型关键要素

    1、正向导通压降 压降:二极管的电流流过负载以后相对于同一参考点的电势(电位)变化称为电压降,简称压降。 导通压降:二极管开始导通时对应的电压。 正向特性:在二极管外加正向电压时,在正向特性的起始部分,正向电压很小,不足以克服PN结内电场的阻挡作

    04-14
  • 继电器的应用细节

    继电器的应用,相信大家都知道,在电路中只要给它供电、断电也就可以工作了。 然而,它的应用细节,不知道大家有没注意 。下面谈谈我的观点 一、现在流行的接法,如图。 图中,继电器的线圈经过Q1作为开关,使其导通与断开。D1作为续流,消耗线圈中的能量。

    04-13
  • 电感是由什么组成的?

    电感器是能够把电能转化为磁能而存储起来的元件。 电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻碍电流的变化。如果电感器在没有电流通过的状态下,电路接通时它将试图阻碍电流流过它;如果电感器在有电流通过的状态下,电路断开

    04-13
  • 解析三极管三个工作状态

    什么正偏,反偏都统统滚蛋!!! 三极管有三个工作状态;截止、放大、饱和;放大状态很有学问也很复杂,多用于集成芯片,比如运放,现在不讨论;其实对信号的放大我们通常用运放处理。三极管更多的是当做一个开关管来使用,且只有截止、饱和两个状态; 截止状

    04-12
  • 20个硬件电子问答

    1、晶体管基本放大电路有共射、共集、共基三种接法,请简述这三种基本放大电路的特点。 共射:共射放大电路具有放大电流和电压的作用,输入电阻大小居中,输出电阻较大,频带较窄,适用于一般放大。 共集:共集放大电路只有电流放大作用,输入电阻高,输出电

    04-12
  • IGBT短路特性

    1、器件结构参数: 2、短路特性: 工作原理: IGBT是双极型三极管和MOS管结合在一起的产物,双极型三极管具有低频(10KHz以下)大电流能力,MOSFET具有高频(100KHz以上)小电流特点。IGBT兼有两种器件的优点,电压控制驱动,通流能力强,频率最高可使用到100

    04-09
  • 二极管结电容和反向恢复时间,到底是怎么来的呢?

    结电容 先说结电容。 二极管是两个管脚的器件,说来不怕丢人,我曾误以为:二极管的结电容就是它的两个管脚形成的寄生电容,因为两个极板放到一起,就构成了一个电容。 当然了,两个管脚确实会形成电容,不过这个电容很小,相比结电容来说,可以忽略不计了。

    04-09
  • 不用单片机实现充电指示电路

    有一个充电电路的设计要求是这样的,只有一个LED指示灯,充电时,LED闪烁,充满电后LED长亮。根据以往的经验,一般充电IC都会设计一个充电状态指示脚,这个脚是开漏输出,可以用一个电阻和一个LED串联起来接在这个充电状态指示脚和电源之间,这样就可以起到充

    04-08
  • 如何读取贴片电阻代码的值(计算实例)

    来源 | DF创客社区 电阻在我们的工作中比较常见,别小看这不起眼的电阻,里面有很多学问。 贴片电阻(SMD Resistor),又名片式固定电阻器,是一种设计为贴片安装的电阻器。 这些SMD电阻器通常比传统的电阻器小得多,因此在电路板上占用的空间也小得多。 贴片电

    03-30
  • IC封装图片大全,你都能认全吗?

    IC封装图片大全 推荐阅读: 点击下方『面包板社区』卡片关注我们, 每天学点电子技术干货 ▲ 点击关注,后台回复"关键词",领取300 G学习资料包! 商务合作 | 广告投放 | 开发板赞助 | 转载开白 请在公众号后台回复  合作  投稿|请发送到:nick.zong@aspencor

    03-29
  • 电路板元器件损坏的故障特点及维修

    一、工控电路板电容损坏的故障特点及维修 电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。 电容损坏表现为:容量变小;完全失去容量;漏电;短路。 电容在电路中所起的作用不同,引起的故障也各有特点。在工控电路板中,数字电

    03-29
下载排行榜
更多
广告
X
广告