8051单片机的串行接口结构
21ic 2021-11-24

8051单片机的通讯方式有两种:

并行通讯:数据的各位同时发送或接收。

串行通讯:数据一位一位顺序发送或接收。参看下图:



串行通讯的方式:

异步通讯:它用一个起始位表示字符的开始,用停止位表示字符的结束。其每帧的格式如下:

在一帧格式中,先是一个起始位0,然后是8个数据位,规定低位在前,高位在后,接下来是奇偶校验位(可以省略),最后是停止位1。用这种格式表示字符,则字符可以一个接一个地传送。

在异步通讯中,CPU与外设之间必须有两项规定,即字符格式和波特率。字符格式的规定是双方能够在对同一种0和1的串理解成同一种意义。原则上字符格式可以由通讯的双方自由制定,但从通用、方便的角度出发,一般还是使用一些标准为好,如采用ASCII标准。

波特率即数据传送的速率,其定义是每秒钟传送的二进制数的位数。例如,数据传送的速率是120字符/s,而每个字符如上述规定包含10数位,则传送波特率为1200波特。

同步通讯:在同步通讯中,每个字符要用起始位和停止位作为字符开始和结束的标志,占用了时间;所以在数据块传递时,为了提高速度,常去掉这些标志,采用同步传送。由于数据块传递开始要用同步字符来指示,同时要求由时钟来实现发送端与接收端之间的同步,故硬件较复杂。

通讯方向:在串行通讯中,把通讯接口只能发送或接收的单向传送方法叫单工传送;而把数据在甲乙两机之间的双向传递,称之为双工传送。在双工传送方式中又分为半双工传送和全双工传送。半双工传送是两机之间不能同时进行发送和接收,任一时该,只能发或者只能收信息。

2.8051单片机的串行接口结构

8051串行接口是一个可编程的全双工串行通讯接口。它可用作异步通讯方式(UART),与串行传送信息的外部设备相连接,或用于通过标准异步通讯协议进行全双工的8051多机系统也可以通过同步方式,使用TTL或CMOS移位寄存器来扩充I/O口。

8051单片机通过引脚RXD(P3.0,串行数据接收端)和引脚TXD(P3.1,串行数据发送端)与外界通讯。SBUF是串行口缓冲寄存器,包括发送寄存器和接收寄存器。它们有相同名字和地址空间,但不会出现冲突,因为它们两个一个只能被CPU读出数据,一个只能被CPU写入数据。

串行口的控制与状态寄存器

串行口控制寄存器SCON

它用于定义串行口的工作方式及实施接收和发送控制。字节地址为98H,其各位定义如下表:

1.jpg

SM0、SM1:串行口工作方式选择位,其定义如下:

2.jpg

其中fosc为晶振频率

SM2:多机通讯控制位。在方式0时,SM2一定要等于0。在方式1中,当(SM2)=1则只有接收到有效停止位时,RI才置1。在方式2或方式3当(SM2)=1且接收到的第九位数据RB8=0时,RI才置1。

REN:接收允许控制位。由软件置位以允许接收,又由软件清0来禁止接收。

TB8: 是要发送数据的第9位。在方式2或方式3中,要发送的第9位数据,根据需要由软件置1或清0。例如,可约定作为奇偶校验位,或在多机通讯中作为区别地址帧或数据帧的标志位。

RB8:接收到的数据的第9位。在方式0中不使用RB8。在方式1中,若(SM2)=0,RB8为接收到的停止位。在方式2或方式3中,RB8为接收到的第9位数据。

TI: 发送中断标志。在方式0中,第8位发送结束时,由硬件置位。在其它方式的发送停止位前,由硬件置位。TI置位既表示一帧信息发送结束,同时也是申请中断,可根据需要,用软件查询的方法获得数据已发送完毕的信息,或用中断的方式来发送下一个数据。TI必须用软件清0。

RI: 接收中断标志位。在方式0,当接收完第8位数据后,由硬件置位。在其它方式中,在接收到停止位的中间时刻由硬件置位(例外情况见于SM2的说明)。RI置位表示一帧数据接收完毕,可用查询的方法获知或者用中断的方法获知。RI也必须用软件清0。

特殊功能寄存器PCON

PCON是为了在CHMOS的80C51单片机上实现电源控制而附加的。其中最高位是SMOD。

串行口的工作方式

8051单片机的全双工串行口可编程为4种工作方式,现分述如下:

方式0为移位寄存器输入/输出方式。可外接移位寄存器以扩展I/O口,也可以外接同步输入/输出设备。8位串行数据者是从RXD输入或输出,TXD用来输出同步脉冲。

输出 串行数据从RXD引脚输出,TXD引脚输出移位脉冲。CPU将数据写入发送寄存器时,立即启动发送,将8位数据以fos/12的固定波特率从RXD输出,低位在前,高位在后。发送完一帧数据后,发送中断标志TI由硬件置位。

输入 当串行口以方式0接收时,先置位允许接收控制位REN。此时,RXD为串行数据输入端,TXD仍为同步脉冲移位输出端。当(RI)=0和(REN)=1同时满足时,开始接收。当接收到第8位数据时,将数据移入接收寄存器,并由硬件置位RI。

下面两图分别是方式0扩展输出和输入的接线图。



方式1为波特率可变的10位异步通讯接口方式。发送或接收一帧信息,包括1个起始位0,8个数据位和1个停止位1。

输出 当CPU执行一条指令将数据写入发送缓冲SBUF时,就启动发送。串行数据从TXD引脚输出,发送完一帧数据后,就由硬件置位TI。

输入 在(REN)=1时,串行口采样RXD引脚,当采样到1至0的跳变时,确认是开始位0,就开始接收一帧数据。只有当(RI)=0且停止位为1或者(SM2)=0时,停止位才进入RB8,8位数据才能进入接收寄存器,并由硬件置位中断标志RI;否则信息丢失。所以在方式1接收时,应先用软件清零RI和SM2标志。

方式2

方式月为固定波特率的11位UART方式。它比方式1增加了一位可程控为1或0的第9位数据。

输出: 发送的串行数据由TXD端输出一帧信息为11位,附加的第9位来自SCON寄存器的TB8位,用软件置位或复位。它可作为多机通讯中地址/数据信息的标志位,也可以作为数据的奇偶校验位。当CPU执行一条数据写入SUBF的指令时,就启动发送器发送。发送一帧信息后,置位中断标志TI。

输入: 在(REN)=1时,串行口采样RXD引脚,当采样到1至0的跳变时,确认是开始位0,就开始接收一帧数据。在接收到附加的第9位数据后,当(RI)=0或者(SM2)=0时,第9位数据才进入RB8,8位数据才能进入接收寄存器,并由硬件置位中断标志RI;否则信息丢失。且不置位RI。再过一位时间后,不管上述条件时否满足,接收电路即行复位,并重新检测RXD上从1到0的跳变。

工作方式3

方式3为波特率可变的11位UART方式。除波特率外,其余与方式2相同。

波特率选择

如前所述,在串行通讯中,收发双方的数据传送率(波特率)要有一定的约定。在8051串行口的四种工作方式中,方式0和2的波特率是固定的,而方式1和3的波特率是可变的,由定时器T1的溢出率控制。

方式0

方式0的波特率固定为主振频率的1/12。

方式2

方式2的波特率由PCON中的选择位SMOD来决定,可由下式表示:

波特率=2的SMOD次方除以64再乘一个fosc,也就是当SMOD=1时,波特率为1/32fosc,当SMOD=0时,波特率为1/64fosc

3.方式1和方式3

定时器T1作为波特率发生器,其公式如下:

波特率=

定时器T1溢出率


T1溢出率= T1计数率/产生溢出所需的周期数

式中T1计数率取决于它工作在定时器状态还是计数器状态。当工作于定时器状态时,T1计数率为fosc/12;当工作于计数器状态时,T1计数率为外部输入频率,此频率应小于fosc/24。产生溢出所需周期与定时器T1的工作方式、T1的预置值有关。

定时器T1工作于方式0:溢出所需周期数=8192-x

定时器T1工作于方式1:溢出所需周期数=65536-x

定时器T1工作于方式2:溢出所需周期数=256-x

因为方式2为自动重装入初值的8位定时器/计数器模式,所以用它来做波特率发生器最恰当。

当时钟频率选用11.0592MHZ时,取易获得标准的波特率,所以很多单片机系统选用这个看起来“怪”的晶振就是这个道理。

下表列出了定时器T1工作于方式2常用波特率及初值。

常用波特率Fosc(MHZ)SMODTH1初值

1.jpg 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 单片机
  • 嵌入式
  • MCU
  • STM
  • ARM Cortex系列处理器知识点汇总

    最近因为要为芯片选定核,所以就在了解哪些核合适且性价比好,这是一个需要结合产品各类技术、市场分析的活,看似简单却还是需要一些储备的,今天选了一篇ARM Cortex系列的科普文章与大家分享。 众所周知,英国的ARM公司是嵌入式微处理器世界当中的佼佼者。AR

    05-11
  • 你的CPU属于哈佛结构还是冯诺依曼结构?

    现代的CPU基本上归为冯诺伊曼结构(也称普林斯顿结构)和哈佛结构。 冯洛伊曼结构就是我们所说的X86架构,而哈佛结构就是ARM架构。一个广泛用于桌面端(台式/笔记本/服务器/工作站等),一个雄踞移动领域,我们的手持设备(平板\手机用的大多就是他了)。 01

    05-10
  • 如何批量修改MCU封装管脚定义

    在做产品开发时,为了缩短研发周期,我们一般都是直接找来参考设计做参考。这些参考资料要么是来自原厂的,要么是来自方案商的。  接触过这么多的参考设计资料,发现大部分的资料都有一个通病,就是不少MCU的PIN脚定义都只是标出IO口的定义,其它复用​​​​功能

    05-08
  • MCU为什么要消抖动

    简单的说,进入了电子,不管是学纯模拟,还是学单片机,DSP、ARM等处理器,或者是我们的FPGA,一般没有不用到按键的地方。按键:人机交互控制,主要用于对系统的控制,信号的释放等。因此在这里,FPGA上应用的按键消抖动,也不得不讲! 一、为什么要消抖动 在

    05-07
  • 51单片机的ISP下载知识

    本文详细介绍了串口、51单片机的ISP下载等基础知识,已经学过单片机的也可以看看,加强一下对这方面的了解。 串口 串行接口简称串口,也称串行通信接口,是采用串行通信方式的扩展接口。 我们比较熟悉的USB接口,全名通用串行总线(Universal Serial BUS),就

    05-06
  • 硬件开发如何选择合适的MCU

    点击上方关注我们! 我在做硬件开发时,如果遇到的是一个新产品,新项目,之前没有做过的,没有任何的经验,在选MCU时,我一般是这样操作的。 首先,根据产品的需求,整理出一份硬件规格。比如,电源管理,传感器接口,人机交互接口等。 然后,整理出整个原理

    05-06
  • 单片机的功耗怎么算的?

    单片机的功耗是非常难算的,而且在高温下,单片机的功耗还是一个特别重要的参数。暂且把单片机的功耗按照下面的划分。 暂且把单片机的功耗按照下面的划分。 1.内部功耗(与频率有关) 2.数字输入输出口功耗 2.1输入口 2.2输出高 2.3输出低 3.模拟输入口功耗从

    05-07
  • 嵌入式工程师必备工具:I2C和SPI总线协议

    IIC vs SPI 现今,在低端数字通信应用领域,我们随处可见IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是这两种通信协议非常适合近距离低速芯片间通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市场需求

    04-30
  • 嵌入式面试注意事项

    找工作也是一门技能,有的人很快就找到自己喜欢的工作,有的人找了很久也没找到合适的工作。 下面给大家分享几点找工作过程中存在的“潜规则”内容。 1、面试的本质不是考试,而是告诉面试官你会做什么 经验不够的小伙伴特别容易犯的一个错误,不清楚面试官到

    04-29
  • 为什么需要RTOS?

    很多单片机初学者都是从裸机开始的,裸机确实也能开发出好的产品,但作为一个嵌入式软件工程师,如果只能用裸机开发产品,那肯定是不够的。 要从裸机的思维转变到RTOS的思维,其实需要一个过程,而且开始的一段时间会很痛苦。但过一段时间理解了一些内容,能

    04-28
  • 使用RTOS的8个理由

    嵌入式系统中,有很多方式实现任务调度。功能有限的小系统中,无限循环足够实现系统功能。当软件设计变得庞大且复杂时,设计师应该考虑使用实时操作系统。 下面给大家分享使用RTOS的8个理由: 1.硬实时响应 基于优先级抢占的RTOS,根据任务的实时需求,执行优

    04-26
  • 单片机延时程序,Keil C编译器实现

    应用单片机的时候,经常会遇到需要短时间延时的情况。需要的延时时间很短,一般都是几十到几百微妙(us)。有时候还需要很高的精度,比如用单片机驱动 DS18B20的时候,误差容许的范围在十几us以内,不然很容易出错。这种情况下,用计时器往往有点小题大做。而

    04-26
下载排行榜
更多
广告
X
广告