数字滤波器可以分为两大部分:即经典滤波器和现代滤波器。经典滤波器就是假定输入信号x(n)中的有用成分和希望滤除成分分别位于不同的频带,因而我们通过一个线性系统就可以对噪声进行滤除,如果噪声和信号的频谱相互混叠,则经典滤波器得不到滤波的要求。通常有高通滤波器,低通滤波器,带通滤波器,带阻滤波器。现代滤波器是从含有噪声的信号估计出有用的信号和噪声信号。这种方法是把信号和噪声本身都视为随机信号,利用其统计特征,如自相关函数,互相关函数,自功率谱,互功率谱等引导出信号的估计算法,然后利用数字设备实现。主要有维纳滤波,卡尔曼滤波,自适应滤波等数字滤波器。
经典滤波的概念,是根据傅里叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。实际上,任何一个电子系统都具有自己的频带宽度(对信号最高频率的限制),频率特性反映出了电子系统的这个基本特点。而滤波器,则是根据电路参数对电路频带宽度的影响而设计出来的工程应用电路。
经典滤波的概念,是根据傅里叶分析和变换提出的一个工程概念。根据高等数学理论,任何一个满足一定条件的信号,都可以被看成是由无限个正弦波叠加而成。换句话说,就是工程信号是不同频率的正弦波线性叠加而成的,组成信号的不同频率的正弦波叫做信号的频率成分或叫做谐波成分。
现代滤波思想是和经典滤波思想截然不同的。现代滤波是利用信号的随机性的本质,将信号及其噪声看成随机信号,通过利用其统计特征,估计出信号本身。一旦信号被估计出,得到的信号本身比原来的信噪比高出许多。典型的数字滤波器有Kalman滤波,Wenner滤波,自适应滤波,小波变换(wavelet)等手段 。从本质上讲,数字滤波实际上是一种算法,这种算法在数字设备上得以实现。这里的数字设备不仅包含计算机,还有嵌入式设备如:DSP,FPGA,ARM等。
数字滤波具有高精度、高可靠性、可程控改变特性或复用、便于集成等优点。数字滤波在语言信号处理、图像信号处理、医学生物信号处理以及其他应用领域都得到了广泛应用。数字滤波有低通、高通、带通、带阻和全通等类型。它可以是时不变的或时变的、因果的或非因果的、线性的或非线性的。应用最广的是线性、时不变数字滤波器。
经典滤波器,又名“经典滤波电路”,就是根据傅里叶分析和变换设计出来的,只允许一定频率范围内的信号成分正常通过,而阻止另一部分频率成分通过的电子装置。
实际上,任何一个电子系统都具有自己的频带宽度(对信号最高频率的限制),频率特性反映出了电子系统的这个基本特点。而滤波器,则是根据电路参数对电路频带宽度的影响而设计出来的工程应用电路。