整数与浮点数存储差异与精度损失
一起学嵌入式','一起学嵌入式 2024-02-21


为什么我们代码将浮点数、整数进行强制转换,或打印输出时会出精度损失,或出错的情况?

想要搞明白这个问题,就需要了解一下整数、浮点数的存储规则。

一、浮点数存储规则

根据国际标准IEEE(电气和电子工程协会)规定,任何一个浮点数NUM的二进制数可以写为:

NUM = (-1) ^ S * M * 2 ^ E; (S表示符号,E表示阶乘,M表示有效数字)①当S为0时,表示一个正数;当S为1时,表示一个负数;②M表示有效数字,1<= M <2;③2^E表示指数比如十进制的3.0,二进制就是0011.0 就可以写成(-1)^ 0 * 1.1 * 2 ^ 1再比如十进制的-3.0,二进制就是-0011.0 就可以写成(-1)^ 1 * 1.1 * 2 ^ 1而规定float类型有一个符号位(S),有8个指数位(E),和23个有效数字位(M)double类型有一个符号位(S),有11个指数位(E),和52个有效数字位(M)以float类型为例:

IEEE对于(有效数字)M和(指数)E有特殊的规定(以float为例): 1.因为M的值一定是1<= M <2,所以它绝对可以写成1.xxxxxxx的形式,所以规定M在存储时舍去第一个1,只存储小数点之后的数字。这样做节省了空间,以float类型为例,就可以保存23位小数信息,加上舍去的1就可以用23位来表示24个有效的信息。2.对于E(指数)E是一个无符号整数所以E的取值范围为(0~ 255),但是在计数中指数是可以为负的,所以规定在存入E时,在它原本的值上加上中间数(127),在使用时减去中间数(127),这样E的真正取值范围就成了(-127~128)。对于E还分为三种情况:①E不全为0,不全为1:这时就用正常的计算规则,E的真实值就是E的字面值减去127(中间值),M的值要加上最前面的省去的1。②E全为0这时指数E等于1-127为真实值,M不在加上舍去的1,而是还原为0.xxxxxxxx小数。这样为了表示0,和一些很小的整数。所以在进行浮点数与0的比较时,要注意。③E全为1当M全为0时,表示±无穷大(取决于符号位);当M不全为1时,表示这数不是一个数(NaN)

二、测试

代码如下:
void test(void){ float m=134.375; char *a=(char*)&m;  printf("0x%p:%d\n",a,*a); printf("0x%p:%d\n",a+1,*(a+1) ); printf("0x%p:%d\n",a+2,*(a+2) ); printf("0x%p:%d\n",a+3,*(a+3) );}

代码输出结果:

具体的计算过程如下:

三、精度损失

我们可以把十进制的小数部分乘以2,取整数部分作为二进制的一位,剩余小数继续乘以2,直至不存在剩余小数为止。

例如0.2可以转换为:

0.2 x 2 = 0.4 0

0.4 x 2 = 0.8 0

0.8 x 2 = 1.6 1

0.6 x 2 = 1.2 1

0.2 x 2 = 0.4 0

0.4 x 2 = 0.8 0

0.8 x 2 = 1.6 1

即:.0011001…

它是一个无限循环的二进制数,这就是为什么十进制小数转换成二进制小数的时候为什么会出现精度损失的情况。

四、整数的存储规则

理解了浮点数的存储规则,再理解整数就很简单了。

整数在内存中都是以补码的形式进行存储,整数有正负之分。当需存储有符号数时,用第一位来表示正(0)和负(1)。

正数的反码和补码还是它本身,下面主要讨论下负数的反码和补码。反码是其原码除去最高符号位后其余位按位取反,补码是其反码在加上1 。

测试代码:
void test(void){ int8_t n=-123; uint8_t *p=(uint8_t *)&n;  printf("%d\n",n); printf("%d\n",*p); }
输出结果:

计算过程如下:


声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 【7.24 深圳】2025国际AI+IoT生态发展大会/2025全球 MCU及嵌入式技术论坛


  • 相关技术文库
  • 单片机
  • 嵌入式
  • MCU
  • STM
  • 3AT89C51单片机引脚说明及引脚图

    AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU...

    昨天
  • 51单片机对LCD1602液晶的驱动设计

    51单片机——LCD1602 1、1602液晶读写时序 (1)、读状态 RS=L,R/W=H,E=H。(判断忙完毕后释放总线) (2)、读数据 RS=H,R/W=H,E=H。 (3)、写指令 RS=L,R/W=L,D0~D7=指令码,E=高脉冲 (4)、写数据 RS=H,R/W=L,D0~D...

    昨天
  • 单片机串口如何接收不定长数据的?

    我们在使用其他STM32的单片机的时候,会发现有些困难,会发现常用的方法并不能用,在还没有接收完数据的时候,就解决不了。于是,只能用通用的方法来解决了。 这个通用的方法,其实原理和使用IDLE的原理一样:...

    昨天
  • ARM处理器的选型原则

    鉴于ARM微处理器的众多优点,随着国内外嵌入式应用领域的逐步发展,ARM微处理器必然会获得广泛的重视和应用。但是,由于ARM微处理器有多达十几种的内核结构,几十个芯片生产厂家,以及千变万化的内部功能配置组合,...

    前天
  • 有哪些低功耗设计方法?单片机系统低功耗设计要点介绍

    功耗,已经是一个老生常谈的话题了。对于功耗,大家多多少少有所了解。目前,很多产品的宣传里便带有低功耗噱头。为增进大家对功耗的认识,本文将基于两点介绍功耗:1.低功耗主要设计方法,2.单片机系统低功耗设计...

    前天
  • 8位32位MCU如何选择?如何选择合适的MCU?

    MCU,对于普通人而言,是一个高大上的存在。但是,在工业中,MCU确实常见产品。为增进大家对MCU的认识,本文将基于两点介绍MCU:1.8位MCU和32位MCU如何选择?2.如何选择合适的MCU。如果你对MCU具有兴趣,不妨继续往...

    07-09
  • ARM开发:一 ARM微处理器概述

    1.1ARM-Advanced RISC Machines ARM(Advanced RISC Machines),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。 1991年ARM公司成立于英国剑桥,主要出售芯片设计技术...

    07-08
  • 分析C51单片机的一些误区和注意事项

    简介:常看见初学者要求使用_at_,这是一种谬误,把C当作ASM看待了。在C中变量的定位是编译器的事情,初学者只要定义变量和变量的作 用域,编译器就把一个固定地址给这个变量。怎么取得这个变量的地址?要用指针。 1) C...

    07-08
  • 51单片机几个延时程序

    简介:51单片机几个精确延时程序:在精确延时的计算当中,最容易让人忽略的是计算循环外的那部分延时,在对时间要求不高的场合,这部分对程序不会造成影响. 一. 500ms延时子程序(晶振12MHz,一个机器周期1us.) 程...

    07-08
  • 总结单片机软件抗干扰的几种办法

    简介:在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中...

    07-08
  • 基于C51单片机实现汽车座椅自动控制系统的软硬件设计

    引言 随着人们生活水平的提高,对汽车座椅的舒适性要求也越来越高,要求对汽车座椅地调节能够更加简单、方便、快捷。目前,汽车座椅位置的调节多采用基于手动调节方式的机械和电动控制两种方式。汽车座椅位置的调节...

    07-02
  • MCS51单片机程序设计时堆栈的计算方法解析

    用C语言进行MCS51系列单片机程序设计是单片机开发和应用的必然趋势。Keil公司的C51编译器支持经典8051和8051派生产品的版本,通称为Cx51。应该说,Cx51是C语言在MCS51单片机上的扩展,既有C语言的共性,又有它自己...

    07-02
下载排行榜
更多
评测报告
更多
广告