如何在一款单片机上实现多任务调度机制?
一起学嵌入式 2024-12-06

在嵌入式系统中,需要同时处理多个任务的需求非常普遍。

本文将介绍如何在STM32芯片上实现多任务处理,通过合理的任务调度和管理,充分发挥芯片的性能,提高系统的灵活性和效率。

下面介绍两种多任务处理的实现方法

1. 时间片轮转调度机制

时间片轮转调度机制是利用定时器中断来实现的。设置一个定时器,当定时器中断发生时,切换到下一个任务的执行。下面是一个简单的时间片轮转调度机制的示例代码

⏩ 定义不同的任务:定义任务的优先级、堆栈大小、维护一个任务列表,通过编写调度器代码,在合适的时机选择下一个任务来执行。

#include "stm32fxxx.h" // 定义任务的优先级 #define TASK1_PRIORITY 1 #define TASK2_PRIORITY 2 // 定义任务的堆栈大小 #define TASK_STACK_SIZE 128 // 定义任务堆栈空间 uint32_t task1_stack[TASK_STACK_SIZE]; uint32_t task2_stack[TASK_STACK_SIZE]; // 定义任务函数 void task1(void); void task2(void); // 定义任务控制块结构 typedef struct { uint32_t* stack_ptr;
} TaskControlBlock; // 定义任务控制块实例 TaskControlBlock tcb1;
TaskControlBlock tcb2; // 定义当前任务指针 TaskControlBlock* current_task; // 任务1的函数 void task1(void) { while (1) { // 任务1的处理逻辑 // 切换任务 __asm volatile("yield");
  }
} // 任务2的函数 void task2(void) { while (1) { // 任务2的处理逻辑 // 切换任务 __asm volatile("yield");
  }
}

⏩ 定时器中断:在中断处理函数中切换任务,并保存当前任务的上下文(包括寄存器、堆栈等),然后加载下一个任务的上下文,使其开始执行

// 定义定时器中断处理函数 void TIM_IRQHandler(void) { // 切换到下一个任务 if (current_task == &tcb1) {
    current_task = &tcb2;
  } else {
    current_task = &tcb1;
  } // 加载下一个任务的堆栈指针 __asm volatile("mov sp, %0" ::"r"(current_task->stack_ptr));
}
多个任务之间可能需要进行通信和共享资源。可以使用全局变量或其他同步机制来实现任务间的数据传递和资源共享。
int main() { // 初始化任务控制块 tcb1.stack_ptr = task1_stack + TASK_STACK_SIZE - 1;
  tcb2.stack_ptr = task2_stack + TASK_STACK_SIZE - 1; // 初始化定时器,设置定时器中断 // 这里使用TIM3作为定时器,具体配置请根据实际情况进行修改 RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
  TIM_TimeBaseInitTypeDef TIM_InitStruct;
  TIM_InitStruct.TIM_Prescaler = 1000;
  TIM_InitStruct.TIM_Period = 1000;
  TIM_InitStruct.TIM_CounterMode = TIM_CounterMode_Up;
  TIM_InitStruct.TIM_ClockDivision = TIM_CKD_DIV1;
  TIM_TimeBaseInit(TIM3, &TIM_InitStruct);
  TIM_ITConfig(TIM3, TIM_IT_Update, ENABLE);
  NVIC_EnableIRQ(TIM3_IRQn);
  TIM_Cmd(TIM3, ENABLE); // 初始化当前任务指针 current_task = &tcb1; // 启动任务1 task1(); while (1) { // 主循环,任务在定时器中断中切换 }
}

这种简单的多任务处理方式适用于较简单的应用场景,但对于复杂的多任务应用,建议使用RTOS来提供更好的任务管理和调度机制。

2. 使用RTOS(实时操作系统)

RTOS是一种常用的多任务处理解决方案,它提供了任务调度和管理机制,简化了多任务应用的开发。

对于STM32芯片,常见的RTOS有FreeRTOS、uC/OS等。以下是实现多任务处理的基本步骤

⏩ 创建任务:使用RTOS的API,在应用程序中创建多个任务。每个任务都有自己的代码和优先级

void Task1(void* pvParameters) { while (1)
  { // Task1处理代码 }
} void Task2(void* pvParameters) { while (1)
  { // Task2处理代码 }
} int main() { // 硬件初始化和其他配置 // 创建任务 xTaskCreate(Task1, "Task1", configMINIMAL_STACK_SIZE, NULL, 1, NULL);
  xTaskCreate(Task2, "Task2", configMINIMAL_STACK_SIZE, NULL, 2, NULL); // 启动调度器 vTaskStartScheduler(); // 代码永远不会执行到这里 while (1)
  {
  }
}
⏩ 内核参数:配置RTOS内核的一些参数,例如时钟节拍和优先级。
int main() { // 硬件初始化和其他配置 // 配置FreeRTOS内核 // 设置时钟节拍 TickType_t tickRate = 1000 / configTICK_RATE_HZ;
  TickTypeSet(tickRate); // 配置优先级分组 NVIC_SetPriorityGrouping(0); // 创建任务和启动调度器 // ... // 代码永远不会执行到这里 while (1)
  {
  }
}
任务处理代码:在任务的处理函数中,编写任务的实际处理代码。由于FreeRTOS采用抢占式调度,每个任务的处理函数应该是一个无限循环,确保任务不会结束。
void Task1(void* pvParameters) { while (1)
  { // Task1处理代码 // 任务挂起一段时间,以便给其他任务执行机会 vTaskDelay(pdMS_TO_TICKS(100));
  }
} void Task2(void* pvParameters) { while (1)
  { // Task2处理代码 // 任务挂起一段时间,以便给其他任务执行机会 vTaskDelay(pdMS_TO_TICKS(50));
  }
}
这是一个简单的示例代码,实现了两个任务(Task1和Task2),每个任务都在一个无限循环中执行自己的处理代码,并使用vTaskDelay()函数挂起一段时间,以便给其他任务执行机会。使用RTOS可以提供较高的可靠性和灵活性,适用于复杂的多任务应用场景。


声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 【7.24 深圳】2025国际AI+IoT生态发展大会/2025全球 MCU及嵌入式技术论坛


  • 相关技术文库
  • 单片机
  • 嵌入式
  • MCU
  • STM
  • 3AT89C51单片机引脚说明及引脚图

    AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU...

    07-11
  • 51单片机对LCD1602液晶的驱动设计

    51单片机——LCD1602 1、1602液晶读写时序 (1)、读状态 RS=L,R/W=H,E=H。(判断忙完毕后释放总线) (2)、读数据 RS=H,R/W=H,E=H。 (3)、写指令 RS=L,R/W=L,D0~D7=指令码,E=高脉冲 (4)、写数据 RS=H,R/W=L,D0~D...

    07-11
  • 单片机串口如何接收不定长数据的?

    我们在使用其他STM32的单片机的时候,会发现有些困难,会发现常用的方法并不能用,在还没有接收完数据的时候,就解决不了。于是,只能用通用的方法来解决了。 这个通用的方法,其实原理和使用IDLE的原理一样:...

    07-11
  • ARM处理器的选型原则

    鉴于ARM微处理器的众多优点,随着国内外嵌入式应用领域的逐步发展,ARM微处理器必然会获得广泛的重视和应用。但是,由于ARM微处理器有多达十几种的内核结构,几十个芯片生产厂家,以及千变万化的内部功能配置组合,...

    07-10
  • 有哪些低功耗设计方法?单片机系统低功耗设计要点介绍

    功耗,已经是一个老生常谈的话题了。对于功耗,大家多多少少有所了解。目前,很多产品的宣传里便带有低功耗噱头。为增进大家对功耗的认识,本文将基于两点介绍功耗:1.低功耗主要设计方法,2.单片机系统低功耗设计...

    07-10
  • 8位32位MCU如何选择?如何选择合适的MCU?

    MCU,对于普通人而言,是一个高大上的存在。但是,在工业中,MCU确实常见产品。为增进大家对MCU的认识,本文将基于两点介绍MCU:1.8位MCU和32位MCU如何选择?2.如何选择合适的MCU。如果你对MCU具有兴趣,不妨继续往...

    07-09
  • ARM开发:一 ARM微处理器概述

    1.1ARM-Advanced RISC Machines ARM(Advanced RISC Machines),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。 1991年ARM公司成立于英国剑桥,主要出售芯片设计技术...

    07-08
  • 分析C51单片机的一些误区和注意事项

    简介:常看见初学者要求使用_at_,这是一种谬误,把C当作ASM看待了。在C中变量的定位是编译器的事情,初学者只要定义变量和变量的作 用域,编译器就把一个固定地址给这个变量。怎么取得这个变量的地址?要用指针。 1) C...

    07-08
  • 51单片机几个延时程序

    简介:51单片机几个精确延时程序:在精确延时的计算当中,最容易让人忽略的是计算循环外的那部分延时,在对时间要求不高的场合,这部分对程序不会造成影响. 一. 500ms延时子程序(晶振12MHz,一个机器周期1us.) 程...

    07-08
  • 总结单片机软件抗干扰的几种办法

    简介:在提高硬件系统抗干扰能力的同时,软件抗干扰以其设计灵活、节省硬件资源、可靠性好越来越受到重视。下面以MCS-51单片机系统为例,对微机系统软件抗干扰方法进行研究。 1、软件抗干扰方法的研究 在工程实践中...

    07-08
  • 基于C51单片机实现汽车座椅自动控制系统的软硬件设计

    引言 随着人们生活水平的提高,对汽车座椅的舒适性要求也越来越高,要求对汽车座椅地调节能够更加简单、方便、快捷。目前,汽车座椅位置的调节多采用基于手动调节方式的机械和电动控制两种方式。汽车座椅位置的调节...

    07-02
  • MCS51单片机程序设计时堆栈的计算方法解析

    用C语言进行MCS51系列单片机程序设计是单片机开发和应用的必然趋势。Keil公司的C51编译器支持经典8051和8051派生产品的版本,通称为Cx51。应该说,Cx51是C语言在MCS51单片机上的扩展,既有C语言的共性,又有它自己...

    07-02
下载排行榜
更多
评测报告
更多
广告