如何为毫米波电路选择材料
微波射频网 2022-09-20

(mmWave)频段的设计应用一度被认为是“不切实际”,或者在大家印象中是只有“军方”才能用得起的高大上的技术。但是,近年来随着第五代新型(5G NR)无线网络和77 GHz汽车雷达的普及,毫米波应用也逐渐变得越来越普遍,毫米波频率信号完全可以通过高集成的印刷电路板(PCB)来进行传输。这种类型的PCB通常会采用多层结构,并且可以同时处理不同类型的信号,包括模拟、数字、RF和毫米波信号。毫米波电路设计工程师面临的主要问题是“集成化”和“小型化”, 他们试图将尽可能多的功能设计到最小的PCB中。但是不同的电路功能对线路板材料的要求不尽相同,例如在毫米波频率下,能提供最佳性能的线路板材料可能不是电源电路最实用的解决方案。

如何为毫米波及高多层板电路选择合适材料

通常,对于具有多种电路功能的多层PCB,最实用的解决方案是通过三种或三种以上不同线路板材料组成的多层PCB来实现电路的全部功能。在选择线路板材料时,需要充分考虑它们的特性,尽可能地选择最佳的线路板材料,以便更好地匹配每种电路所需要实现的功能,例如:功率电路、高速数字、低频射频、微波以及高频毫米波电路等。在选择线路板材料时,首先考虑的通常是材料的电气参数,如:介电常数(Dk)和损耗因数(Df)或损耗角正切。其次,也需要根据电路的功能和层数,充分考虑线路板材料的机械特性。因为线路板材料的厚度等机械性能会影响传输线的尺寸和传输线之间的间距,从而影响多层板中高速数字、高频微波与毫米波电路的性能。第三,在设计和生产多层电路时,还必须考虑如何将这些不同的层压板组合互连起来。无论选择什么样的材料,包括线路板材料和粘接材料,都需要考虑好怎样更容易,更方便的将这些材料加工组合成为一个整体。

微波电路工程师首先要了解线路板材料的特性对不同电路的性能会产生什么样的影响,才能更合理的将微带线、带状线和接地共面(GCPW)传输线等高频传输线与FR-4等低成本线路板材料相结合,组成多层板电路。但是,随着频率的增加,线路板材料的电气参数随频率的变化也需要考虑。如Dk和Df随着频率的增加,将对传输线的性能产生巨大的影响,如影响雷达脉冲的同步或调制通信信号的完整性等。

线路板材料的机械特性,例如厚度和厚度的一致性,在射频微波频率下可能并没有那么重要。但是,随着信号频率攀升至毫米波范围,这些机械特性都会对电路性能产生影响。因此,在选择毫米波频率的线路板材料时,必须充分考虑这些因素的影响。在这么小的波长下,线路板材料表面导体的粗糙度也会影响电路性能,并导致相位响应和插入损耗的差异。

同样,对于高速数字电路,也必须充分考虑选择适合的线路板材料来设计传输线,这样才能满足传输线的良好匹配(通常为50Ω或100Ω差分)、阻抗一致性以及传播特性,避免不必要的信号延迟和信号失真。而且必须在所有节点(包括PCB层之间)保持阻抗一致性,这就要求微孔的加工生产工艺具备高度的一致性。某些线路板材料的成分,特别是在毫米波频率下,可能更适合现代微加工技术(例如激光钻孔),以形成传输线互连所需的微孔。对高速数字电路和毫米波电路而言,保证微型通孔的距离最短,同时做到多层PCB层与层之间的精确对准,可以实现最低的损耗和最高的可靠性,即使在不同线路板材料之间进行互连时也是如此。为了实现并保持良好的层间对准以及层间的高可靠性微孔,需要具有优异机械稳定性的线路板材料。

解决方案选择

一般来说,自动驾驶汽车中的雷达系统和5G无线通信网络的毫米波电路的多功能多层印制电路板,都可以根据某些已经大规模商业应用的标准来进行设计和制造。现在的主流设计方案是采用更多层和更薄的电路,以适应小尺寸和轻重量的要求。实际这种需求在军用毫米波电路中较为常见,需要满足尺寸(Size)、重量(Weight)和功率(Power)的要求(统称为SWaP)。对于商用毫米波电路,其它需要考虑的设计指标还包括:更高的密度、在更小的电路上实现更多的功能、良好的温度稳定性、低吸湿性以及在苛刻工作环境中保持正常运行。因此,用于高速数字电路和毫米波电路的线路板材料通常在宽温度范围内需满足低Dk、低Df和稳定的Dk、稳定的Df。

如何为毫米波及高多层板电路选择合适材料

随着越来越多的毫米波电路采用多层PCB板,它们对线路板材料的需求也在不断增加,这些材料不仅要满足高频/高速电路的电气性能需求,而且还要满足多层电路的机械要求。这种多层PCB板通常是由线路层压板和粘结片(粘结材料)组成,从而实现将各层结合在一起的目的。对于更高频率的应用,例如,罗杰斯公司(Rogers Corp.)的RO3003™线路板材料在毫米波频率实现了低损耗电路的特性。这种基于低Dk陶瓷填料的PTFE线路层压板在10 GHz时的z轴(厚度方向)的Dk为3.00,在10 GHz时的Df为0.0010;其厚度从0.005英寸(0.13毫米)到0.060英寸(1.52毫米)范围可选。

RO3003™材料已被广泛用于77GHz的单层电路,并具有可靠的尺寸稳定性和温度特性,它用于多层PCB结构上表现出的性能也是十分可靠的。该材料在x和y轴上的热膨胀系数(CTE)与铜相同,约为17 ppm /°C,可以实现多层PCB组件中的高尺寸稳定性。z轴CTE为25 ppm /°C的特性为需要层与层之间设计微孔时,实现了稳定可靠的电镀通孔(PTH)。另外,它还具有0.04%的低吸湿性,适用于不同潮湿的工作环境。

线路层压板铜箔表面的光滑度在较高的频率下尤其重要,因此罗杰斯公司(Rogers Corp.)设计开发了RO3003G2™线路板材料。它是在原有的RO3003™层压板基础上优化了填料,降低了的介质的孔隙率和铜箔表面粗糙度。RO3003G2与RO3003具有几乎相同的介质Dk和Df值,但RO3003G2采用了更光滑的铜箔,因此在毫米波频率下的损耗更小一些。同时,RO3003G2继承了RO3003层压板在x-y平面上良好的热膨胀系数(CTE)性能,而且优化的填料系统使Z轴CTE值(18 ppm/°C)更接近铜,具有非常可靠的金属化过孔(PTH)性能。材料厚度为0.005英寸(0.13毫米)和0.010英寸(0.25毫米)可选。

当需要考虑机械稳定性以及更薄的线路板材料时,例如在尺寸和重量都必须最小化的多层PCB中,CLTE-MW™线路板材料正可以满足电路所需要的性能需求。CLTE-MW™材料采用开纤玻璃结构和低Dk陶瓷填料系统,具有优异的尺寸稳定性。它的厚度从0.003英寸(0.076毫米)到0.010英寸(0.25毫米)不等,可以满足不同信号的接地间距要求,同时还能最大程度地减小多层电路组件的尺寸和重量。对于不同的厚度,CLTE-MW™材料在10 GHz时Z轴上Dk值范围为2.94至3.02。同时其具有良好的CTE性能和PTH可靠性,吸湿性也非常低,仅为0.03%,可以适应各种具有挑战性的工作环境。

粘结材料和半固化片材料的作用不仅仅是将多层PCB电路中各层固定在一起,而且它们还会成为PCB的一部分。因此,需要根据其电气和机械性能以及粘结性能来选择。以罗杰斯公司的2929粘结材料为例,在加工多层PCB时,它可以同时兼容平压和高压粘结两种方法。2929粘结材料也可提供不同的厚度。其在10 GHz时Z轴上的Dk值为2.94,同时具有0.003的低Df值,低Z轴膨胀系数可以确保电镀通孔的可靠性,并且能与含PTFE的线路板材料兼容,用于多层PCB板的牢固粘结。

罗杰斯公司的SpeedWave™300P是一款完全符合RoHS标准的、可全程无铅装配的半固化片材料,它可以用于FR-4和含PTFE线路板材料(如CLTE-MW层压板)的加工工艺。这种半固化片材料具有3.0至3.3(取决于厚度)的低Dk和0.0019至0.0022的低Df值,具有良好的流动性和填充特性,且Z轴膨胀率低,可获得可靠的电镀通孔。尤其是在高层数电路中,它可以提供多种开纤和标准的玻璃布配置,以及不同的树脂含量组合,从而实现最佳的粘结效果。

随着毫米波带宽的日益普及,包含毫米波电路的多层PCB也将变得越来越普遍,其设计的层数越来越多,尺寸越来越小。选择正确的线路板材料和半固化片材料,一切都会更加紧密的融合在一起。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • RF
  • 射频
  • 通信
  • 无线
  • 无线通信设备通用测试方法

    随着我国无线通信的迅速发展,对无线通信设备的技术要求越来越高,如何确定其性能指标成为设备生厂商与网络运营商以及通信测试机构所共同关注的问题。本文介绍了用于无线通信设备的通用测试方法。这测试方法适用于包络边续的频率调制或相位调制系统,频率范围:25MHz到1000MHz,信道间隔12.5KHz,20KH及25KHz。测试设备与测试条件1、功率测试接收机:用于测试相邻信道的发射机功率。它包括振荡器、中...

    2小时前
  • 无线通信设备通用测试方法

    随着我国无线通信的迅速发展,对无线通信设备的技术要求越来越高,如何确定其性能指标成为设备生厂商与网络运营商以及通信测试机构所共同关注的问题。本文介绍了用于无线通信设备的通用测试方法。这测试方法适用于包络边续的频率调制或相位调制系统,频率范围:25MHz到1000MHz,信道间隔12.5KHz,20KH及25KHz。测试设备与测试条件1、功率测试接收机:用于测试相邻信道的发射机功率。它包括振荡器、中...

    2小时前
  • 实现非接触资讯交换NFC射频测试扮要角

    近距离无线通讯(NFC)将现有的非接触式辨识技术与互联互通技术相结合并加以发展,由索尼(Sony)与恩智浦半导体(NXP)(前身为Philips)共同研发。NFC可广泛用于各种资讯交换,例如电话号码、图像、MP3档、数字式授权、电子钱包、广告资讯、产品资讯等。这种资讯交换可在两个具有NFC功能的电子设备(如手机)之间进行,抑或于具有NFC功能的手机和与其相容并位于近距离内的无线射频辨识系统(RFI...

    2小时前
  • 平台化信号分析仪系列覆盖无线测试需求

      无线设计和测试的挑战集中在有限的带宽催生出了复杂的调制和编码技术,因此要求更高质量的射频信号和信号保真,而3G、4G的演进,各种调制制式对应着各自的解调方案,并且,MIMO等新的传输方式的出现,也对测试和生产提出了新的挑战。  针对上述的测试挑战,安捷伦科技日前推出了其X 系列信号分析仪中性能最高的N9030A PXA系列分析仪。PXA 提供3Hz-26.5GHz 的频率范围,25MHz、40...

    2小时前
  • 适合便携式系统的RF功率测量方法

    设计低功率电路同时实现可接受的性能是一个困难的任务。在 RF 频段这么做更是迅猛地提高了挑战性。今天,几乎每一样东西都有无线连接能力,因此 RF 功率测量正在迅速变成必要功能。这篇文章着重介绍多种准确测量 RF 信号电平的有用方法,以优化这些无线系统的性能。本文讨论满足各种不同应用需求的优化方法。从单载波连续波 (CW)、多载波连续波到含有高波峰因数波型的 QAM (正交调幅),RF 信号可以采取...

    2小时前
  • 图解 | 你管这破玩意儿叫TCP?

    劝低并发编程,周一很颓废,周四很硬核 你是一台电脑,你的名字叫 A 经过这篇文章中的一番折腾,只要你知道另一位伙伴 B 的 IP 地址,且你们之间的网络是通的,无论多远,你都可以将一个数据包发送给你的伙伴 B 这就是物理层、数据链路层、网络层这三层所做的

    4小时前
  • 几种常见的通信接口

      通信接口(communicaTIoninterface)是指中央处理器和标准通信子系统之间的接口。如:RS232接口。RS232接口就是串口,电脑机箱后方的

    昨天
  • 无线局域网络基频发射模块测试系统介绍

    近年来已有不少公司推出高速数据采集卡 (High Speed Data Acquisition Card), 并且声称可以应用在军用雷达信号分析、超声信号分析、数字广播信号分析,或是喷墨式墨盒系统测试等各个方面。仔细观察一下这些高速数据采集卡的规格: 20~100 MS/s 的采样频率,30~60MHz 的带宽,可以供多组模拟信号同时输入,同时模拟输入的范围可通过软件选择… 等等,的确是有条件可以...

    前天
  • 基于下一代网络分析仪来提高研发竞争力

    目前,研发和生产经理以及工程师们正面临着许多严峻的挑战,而且每个团体也有着自身独特的需求。例如在生产阶段,工程师需要缩短测试时间,同时提高吞吐率和产量。此时最重要的就是速度。而在研发阶段,最关键的则是能否更迅速地解决设计问题并减少重复作业。因此,在整个产品开发周期中,测试仪表的易用性至关重要。问题是这些“需求”与现有的测试和测量解决方案不太一致—特别是考虑到目前往往需要使用多种测试设备,才能正确表...

    前天
  • 安诺尼手持频谱仪力助现场快速检测

    做为交通工具,飞机的迅捷、舒适以及服务质量相对火车,汽车,轮船等等交通工具来说当仁不让是最为优秀的,但其内部空间特别是活动范围又是最为有限的。当机舱内需要排查某些隐患时,如何在有限的空间内最快速,最全面的定位故障点,这是检测人员所面对的首要问题。以载客量比较大的标准波音747-400型客机来说,它经济舱座位间的舱内甬路宽度大约是17英寸,机舱高度在74英寸左右,航空座椅下的空间更是狭小。在这样特定...

    前天
  • 网络分析仪的误差、校准和应用

    理解矢量网络分析仪不确定度的来源有助于你采取行之有效的用户校准方法。对于下图所示的完整的双端口网络分析仪结构,我们从前向开始分析。图 完整的两端口网络分析仪源的不确定性首先,第一个不确定性是传输信号和反射信号由于在频率上或者分别正,反向的轨道导致的信号丢失。其次,DUT的输入阻抗和网络分析仪或系统阻抗的差异。同样,DUT输出端也存在类似情况,它们分别属于源匹配和匹配。用于信号分离的定向耦合器的效率...

    前天
  • 光纤复合低压电缆的优势

      OPLC(光纤复合低压电缆)实现电力光纤到户,利用敷设到千家万户的低压电缆线路,充分利用电网“最后一公里”资源。光纤复合低压电缆整合电网资源,实现网络基础设

    前天
下载排行榜
更多
广告