现代科技推动下,芯片制造全流程堪称一场精密的工艺之旅,整个工艺过程不仅展示了材料科学的前沿突破,更是人类智慧与先进科技的完美融合。在全球数字化转型背景下,了解半导体制造过程对于从事电子制造领域或对此感兴趣的人来说极为重要。
No.1 电缆终端头和中间接头的基本要求 1. 线芯连接好 接头的接触电阻应小而稳定,能经受故障电流冲击,运行中接头电阻不应大于电缆线芯本体同长度电阻的1.2倍。 2. 绝缘性能好 接头绝缘水平不应低于电缆本体,介质损耗低;户外需考虑在恶劣条件下的安全运行;接头的外露导电部分对地和相间距离要求需满足下表 3. 密封性能好(保证电缆头安全运行的必要条件) 要防止在运行条件下水分及导电介质浸入绝缘,侵入电缆头内;要防止电缆头内的绝缘流失; 不同绝缘材料的电缆对密封性能有不同要求,应分别处理;同时,应注意材料本身自然老化对密封性能的影响。 4. 机械性能好 接头应具备与现场安装与运行条件相适应的机械强度 5. 结构简单 便于现场安装,具有与当前经济条件相适应的价格 No.2 二、电缆头的安装要点 电缆终端头和中间接头,是输变电电缆线路中的重要部件,它的作用是分散电缆终端头外屏蔽切断处的电场,保护电缆不被击穿,还有内、外绝缘和防水等作用。在电缆线路中,60%以上的事故是附件引起的,所以接头附件质量的好坏,对整个输变电的安全可靠起十分重要的作用。 1. 导体的连接 导体连接要求低电阻和足够的机械强度,连接处不能出现尖角。中低压电缆导体连接常用的是压接,压接应注重: (1)选择合适的导电率和机械强度的导体连接管; (2)压接管内径与被连接线芯外径的配合间隙取0.8-1.4mm; (3)压接后的接头电阻值不应大于等截面导体的1.2倍,铜导体接头抗拉强度不低于60N/mm²; (4)压接前,导体外表面与连接管内表面涂以导电胶,并且钢丝刷破坏氧化膜; (5)连接管、线芯导体上的尖角、毛边等,用锉刀或砂纸打磨光滑。 2. 外半导体屏蔽的处理 外半导体屏蔽的处理外半导体屏蔽是电缆和接头绝缘外部起均匀电场作用的半导电材料,同内半导体屏蔽一样,在电缆及接头中起到了十分重要的作用。外半导体端口必须整洁均匀还要求与绝缘平滑过渡,并在接头增绕半导体带与电缆本体外半导体屏蔽搭接连通。 3. 电缆反应力锥的处理 施工时外形、尽寸准确无误的反应力锥,在整个锥面上电位分布是相等的,在制作交联电缆反应锥时,一般采用专用切削工具,也可以用微火稍许加热,用快刀进行切削,基本成型后,再用玻璃修刮,最后用砂纸由粗至细进行打磨,直至光滑为止。 4. 金属屏蔽及接地处理 金属屏蔽在电缆及接头中的作用主要是用来传导电缆故障短路电流,以及屏蔽电磁场对临近通讯设备的电磁干扰,运行状态下金属屏蔽在良好的接地状态下处于零电位,当电缆发生故障之后,它具有在极短的时间内传导短路电流的能力。接地线应可靠焊接,两端盒电缆本体上的金属屏蔽及铠装带牢固焊接,终端头的接地应可靠。 5. 接头的密封和机械保护 接头的密封和机械保护是确保接头安全可靠运行的保障。应防止接头内渗入水分和潮气,另外在接头位置应搭砌接头保护槽或装设水泥保护盒等。 No.3 GCA ZJ10-型硅橡胶预制式中间接头 (一)概述 型号名称: 1. 用途及工作环境 本接头用于两根额定电压为8.7/10kV(8.7/15kV及6/10kV)交联电力电缆的相互连接。 工作环境:环境温度-40℃~+60℃ 工作方式:电缆沟敷设。长期工作温度、过载温度满足与其配套的电缆的要求。 2. 规格及尺寸,安装总图及配套材料表。 (一)结构及工作原理 本接头为硅橡胶预制件,其结构紧凑,合理,安装简便,具有优异的电气性能和长的使用寿命,接头两端的两个应力锥妥善地解决了被连接的两根电缆外屏蔽切断处的电应力集中问题,保证了运行可靠安全。 (二)安装操作说明 安装应由熟练的电缆安装二人进行。 1. 剥切电缆 按图示剥切电缆,把两根长的热缩管套到剥切较短的电缆上,一根短的热缩管套到剥切较长的电缆上。 2. 剥切铜屏蔽、外半导电层、绝缘层:按图和表剥切铜屏蔽层、外半导电层、绝缘层,剥切前需先用PVC带将铜蔽层、外半导电层、绝缘层,剥切前需先用PVC带将铜蔽带固定。注意无损伤绝缘层,绝缘层端部倒角1×45°(不能削成铅笔头)。用砂纸打磨紧接绝缘层的半导电层,使其与绝缘层光滑过渡。 3. 套入铜编网、压接连接管、打磨、清洗: 将铜编网扩大,套到电缆线芯上,将连接管套入剥切较长的一端电缆线芯上,用压钳压接三次,压接时三道压痕错开30°。打磨连接管上的毛刺、尖角,用清洗纸将连接管及电缆绝缘、外半导电层按清洗方向清洗干净,连接管要单独清洗。 4. 推入硅橡胶接头:分别在中间接头内部、绝缘层及半导电层上均匀的涂一层硅脂,然后用力一次将中间接头推入剥切较长的电缆上,直到电缆绝缘从另一端露出为止。用干净的纸擦去多余的硅脂。 5. 对接、中间接头复位:将剥得较短的一端电缆线芯插入连接管,用压接钳压接三次,除去毛刺、尖角用清洗纸清洗连接管和电缆绝缘,用相色带按图示做好标记。在电缆绝缆层上均匀的涂一层硅脂,用力将中间接头拉回至相色带标记处,擦去多余的硅脂,用手拧动中间接头以消除安装应力。 6. 缠绕半导电带:在接头体两端用半导电带缠绕成不小于接头体端部直径的缠绕体(起止动作用),再以重叠1/3形式绕一层半导电带至接头另一端与半导电层搭接。 7. 收缩内护套、铠装连接:将长的热缩管拉至接头中间,使其两端与电缆内护套搭盖,用喷灯从中间接头部位开始向两端均匀加热,直到两端有小量热溶胶挤出。用一条16mm²的编带连接两端铠装沿铠装绑扎几圈铜扎线并焊牢,中间用3圈PVC带固定。
目录 一、交流电源防雷器(一)单相并联式防雷器(三)单相串联式防雷器(四)三相串联式防雷器二、通信机房用直流电源防雷器(一)并联式直流电源防雷器(二)串联式直流电源防雷器三、通用两级信号防雷器(一)双绞线型(二)同轴线型四、小功率电源变压器或开关电源保护电路(以两组输出为例)五、通讯电子设备的保护电路六、直流电源与信号同传1、110V 不接地电源与信号同传:2、+24V 负极接地电源与信号同传:七、信号电路的二级双重保护方式八、检测/控制电路的保护九、单级信号防雷器1、只用玻璃放电管的保护电路2、只用半导体过压保护器的保护电路3、只用 TVS 管的保护电路十、天馈防雷器1、单级电路天馈防雷器2、二级电路天馈防雷器3、三级电路天馈防雷器十一、防静电保护器 一、交流电源防雷器 (一)单相并联式防雷器 电路一:最简单的电路 说明: 1、优点:电路简单,采用复合对称电路,共模、差模全保护, L、N 可以随便接。 缺点:压敏电阻RV1 短路失效后易引起火灾。最好在每个压敏电阻上串联一个工频保险丝以防压敏电阻短路起火。如果L、N 线不可能接反,则可省去压敏电阻RV2、RV3,将放电管G 的上端直接接到N 线上,构成“1+1”电路。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,以延长使用寿命和确保安全)。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 电路二:较安全的电路 说明: 1、优点:采用复合对称电路,共模、差模全保护, L、N 可以随便接,正常工作时无漏电流,可延长器件使用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引起火灾。缺点:万一压敏电阻和陶瓷气体放电管都短路失效时还有可能起火。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,以延长使用寿命和确保安全)。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 电路三:通用的安全保护电路 说明: 1、优点:采用复合对称电路,共模、差模全保护,L、N 可以随便接,安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 3、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。 4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 5、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 (二)三相并联式防雷器 电路一:最简单的电路 说明: 1、优点:采用“3+1”电路,电路简单,三相全保护。缺点:压敏电阻短路失效后易引起火灾。最好在每个压敏电阻上串联一个工频保险丝以防压敏电阻短路起火。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长使用寿命和确保安全)。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 电路二:较安全的电路 说明: 1、优点:采用“3+1”电路,三相全保护,正常工作时无漏电流,可延长器件使用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引起火灾。缺点:万一压敏电阻和陶瓷气体放电管都短路失效时还有可能引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长使用寿命和确保安全)。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 电路三:通用的安全保护电路 说明: 1、优点:采用“3+1”电路,三相全保护,安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 3、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个工频保险丝以防工频过电压瞬间穿压敏电阻起火。 4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 5、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 (三)单相串联式防雷器 单相通用安全保护电路: 说明: 1、优点:采用两级复合对称电路,共模、差模全保护,残压低,L、N 可以随便接,安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示第一级为m 个压敏电阻并联,第二级为n 个并联,应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 3、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。 4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 5、压敏电阻和放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。 6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 (四)三相串联式防雷器 三相通用安全保护电路: 说明: 1、优点:采用两级“3+1”电路,三相全保护,残压低,安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示第一级为m 个压敏电阻并联,第二级为n 个并联,应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 3、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。 4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 5、压敏电阻和放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。 6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器 1、正极接地(-48V)直流电源 说明: 1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 2、负极接地(+24V)直流电源 说明: 1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 3、正负对称直流电源 说明: 1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为150V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右) (二)串联式直流电源防雷器 1、正极接地(-48V)直流电源 说明: 1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量Im 大时,第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级Im1≥Im,第二级Im2≥(0.2~0.3)Im 估算。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、第一个陶瓷气体放电管G1 的通流容量根据要求的通流容量Im 选择,第二个放电管G2 可以参照第二级Im2 选择。 4、压敏电阻和放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。 5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 2、负极接地(+24V)直流电源 说明: 1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量Im 大时,第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级Im1≥Im,第二级Im2≥(0.2~0.3)Im 估算。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、第一个陶瓷气体放电管G1 的通流容量根据要求的通流容量Im 选择,第二个放电管G2 可以参照第二级Im2 选择。 4、压敏电阻和放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。 5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 3、正负对称直流电源 说明: 1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量Im 大时,第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级Im1≥Im,第二级Im2≥(0.2~0.3)Im 估算。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 三、通用两级信号防雷器 (一)双绞线型 通用电路一: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: 通用电路二: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②玻璃放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③本电路只适用于冲击电流不大于玻璃放电管最大脉冲放电电流的场合,且电路中没有连续直流电压。 通用电路三: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下表: ③本电路只适用于电路中没有连续直流电压的场合。 通用电路四: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选择,见下表: ③使用电压低的半导体过电压保护器时,必须如图所示在接地端串联玻璃放电管;当使用电压高于100V 的半导体过电压保护器时可以不串联玻璃放电管。 ④本电路只适用于电路中没有连续直流电压的场合。 通用电路五: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③本电路适用于传输高频/高速信号(最高频率可达20MHZ)。 (二)同轴线型 (1)外导体接地电路: 通用电路一: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路带宽很宽,可以传输 20MHZ 以下的高频信号。 ④输入、输出接头应分别与原系统的接头类型相配。 通用电路二: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下表: ③本电路只适用于电路中没有连续直流电压的场合。 ④输入、输出接头应分别与原系统的接头类型相配。 通用电路三: 说明: ①本电路只适用于信号频率/速率较低,且电路中没有连续直流电压的场合。 ②R 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。 ③玻璃放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选择,见下表: ④输入、输出接头应分别与原系统的接头类型相配。 (2)外导体不接地电路: 通用电路一: 说明: ①电路带宽很宽,可以传输 20MHZ 以下的高频信号。 ②陶瓷气体放电管和 TVS1 的直流击穿电压根据信号电压幅度选择,见下表: ③R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ④输入、输出接头应分别与原系统的接头类型相配。 通用电路二: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②玻璃放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下表: ③本电路只适用于信号频率/速率较低的场合。 ④输入、输出接头应分别与原系统的接头类型相配。 (三)提高传输频率/速率的方法 1、采用低电容TVS 管或半导体过压保护器 传输频率/速率≥10MHz,Cj≤60pF; 传输频率/速率≥100MHz,Cj≤20pF。 2、将TVS 管或半导体过压保护器串入高速整流桥中(如下图所示): 四、小功率电源变压器或开关电源保护电路(以两组输出为例) 电路一: 说明: ①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻RV1 的通流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源防雷器” ),压敏电压应在470~620V 之间选取(电压很不稳定的地方应选更高的)。关注@电路一点通 ② RV2、RV3 根据U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选择,不带长引线时用5D 或7D,用长引线输出时,应选用通流容量更大的压敏电阻(引线越长,通流容量要越大)。 ③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小选择。 电路二: 说明: ①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻RV1 的通流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源防雷器” ),压敏电压应在470~620V 之间选取(电压很不稳定的地方应选更高的)。 ② TVS1、TVS2 一般用1.5KE 系列的(浪涌电流很小的地方也可用P6KE 系列的),根据U1、U2 的最大峰值电压选择击穿电压值(VBRmin≥1.2Up)。 ③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小选择。 ④本电路只适用于输出端不带长引线、浪涌电流较小的地方使用(例如在同一块电路板或相邻电路板上)。 电路三: 说明: ①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻RV1 的通流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源防雷器” ),压敏电压应在470~620V 之间选取(电压很不稳定的地方应选更高的)。 ② RV2、RV3 根据U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选择,不带长引线时用5D 或7D,用长引线输出时,应选用通流容量更大的压敏电阻(引线越长,通流容量要越大)。输出电流较大时,要在线上串联自恢复保险丝PTC2、PTC3(根据输出电流和最高环境温度选择)。 ③陶瓷气体放电管一般用直流击穿电压470V 的,通流容量根据输入浪涌电流大小选择。 五、通讯电子设备的保护电路 电路一: 说明: ①本电路适用于架空线引入或其它浪涌电流较大的场合。 ②陶瓷气体放电管的最大放电电流一般选 10kA 或5kA,直流击穿电压根据信号电压幅度选择,见下表:关注@电路一点通 ③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,则可用P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 电路二: 说明: ①在埋地电缆引入或其它浪涌电流较小的场合使用。 ②BLSA1、BLSA2 用YA-301 型或 YS-301 型玻璃放电管。 ③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,TVS 管可用P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 电路三: 说明: ①在埋地电缆引入或其它浪涌电流较小的场合使用。 ②R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ③使用电压低(≤100V)的半导体过压保护器时,必须如图所示在接地端串联玻璃放电管(BLSA3);当使用电压高于100V 的半导体过压保护器时可以不串联玻璃放电管。 六、直流电源与信号同传 1、110V 不接地电源与信号同传: 电路一 电路二 2、+24V 负极接地电源与信号同传: 电路一 电路二 七、信号电路的二级双重保护方式 说明: 图中所标元件型号适用于信号幅度≤6V,整流桥中所接的P0080 可以用P6KE7.5A型TVS 管代替(负端朝左)。其它信号幅度时,要更换元件型号。 八、检测/控制电路的保护 例如:水、电、煤气抄表系统,门禁、对讲、报警系统,这类系统一般采用低频(脉冲)信号或直流(交流)开关信号。这类系统又分为不接地系统和接地系统两大类。 (1)不接地系统保护电路: 说明: ①R1、R2 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。 (2)接地系统保护电路: 说明: ①R 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。 九、单级信号防雷器 1、只用玻璃放电管的保护电路 说明: ①可用于信号频率/传输速率很高,但没有连续直流电压的场合。 ②玻璃放电管的直流击穿电压应根据信号电压峰值,按下式选择: VBRmin≥1.2USpeak ③既可以对不接地的双线传输线进行保护,也可以在有公共接地线的传输系统中(如图中虚线所示)对需要保护的线进行独立保护。 2、只用半导体过压保护器的保护电路 说明: ①可用于信号频率/传输速率较低,且没有连续直流电压的场合。 ②半导体过压保护器的击穿电压应根据信号峰值电压,按下式选择: VBR≥1.2USpeak ③当所用半导体过压保护器的击穿电压低于 100V 时,应在接地端串联一个击穿电压大于100V 的二端半导体过压保护器或玻璃放电管再接地,如下图所示。 ④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护”的电路,可以对1 线、2 线、⋯⋯分别进行保护。 3、只用 TVS 管的保护电路 说明: ①可用于信号频率/传输速率较低、线路中可能有连续直流电压、浪涌电流较小的场合。 ②TVS 管的直流击穿电压应根据信号电压峰值,按下式选择: VBRmin≥1.2USpeak ③当接地线较长、信号易受干扰时,可在TVS1、TVS2(左图)或TVS2、TVS3(右图)之间加接击穿电压大于100V 的TVS 管或玻璃放电管再接地,如下图所示。 ④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护”的电路,可以对1 线、2 线、⋯⋯分别进行保护。 ## 4、复合保护电路 说明: ①可用于信号频率/传输速率较高(≤10MHZ)的场合。整流桥若用快速恢复二极管构成,传输信号频率/速率可达20MHz 以上。 ②当线路中有连续直流电压时,必须采用电路二。 ③图中所标元件型号适用于信号幅度≤6V。信号幅度更大时,要更换整流桥中所接元件型号(参照“两级信号保护电路”关于TVS 管和半导体过压保护器选择的说明)。 ④当接地线较长、信号易受干扰时,TVS1、TVS2 应选用击穿电压≥100V、且峰值脉冲功率更大的TVS 管,或采用电路三。 十、天馈防雷器 1、单级电路天馈防雷器 说明: ①可以同时传送电源,保护效果较差,适用于天线不带放大器或虽然带放大器但耐冲击能力较强的场合。 ②同轴腔体和两端的接头是根据系统所用接头类型、传输信号频率范围专门设计加工的。 ③陶瓷气体放电管一般选用通流容量 20kA 的,直流击穿电压主要根据所传输的信号功率大小选取,一般50W 以下用90V 的,传输功率越大,应选用直流击穿电压越高的放电管。 ④将放电管装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损耗应满足要求。 ⑤在户外使用时,腔体、接头、放电管安装孔都必须设计成防水的。 2、二级电路天馈防雷器 说明: ①保护效果好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器的场合。 ②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加工的。 ③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压90V 的。 ④TVS 管一般用1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选取(VBRmin≥1.2UDC 或VBRmin≥1.2Up)。 ⑤ C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L3 是用漆包紫铜线绕成的空心电感,L2 可用100μH 左右的铁心电感。 ⑥将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损耗应满足要求。 ⑦在户外使用时,腔体、接头和盖板都必须设计成防水的。 3、三级电路天馈防雷器 说明: ①保护效果很好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器的场合。 ②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加工的。 ③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压90V 的。关注@电路一点通 ④压敏电阻 RV 一般选用20D100K 型的。 ⑤TVS 管一般用1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选取(VBRmin≥1.2UDC 或VBRmin≥1.2Up)。 ⑥C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L4 是用漆包紫铜线绕成的空心电感,L2、L3 可用100μH 左右的铁心电感。 ⑦将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损耗应满足要求。 ⑧在户外使用时,腔体、接头和盖板都必须设计成防水的。 十一、防静电保护器 说明: ① “电路一”响应时间最短,通流量较小,适用于不能接地的设备、部件或电路; ② “电路二”响应时间较短,通流量可大可小,适用于不能接地的设备、部件或电路; ③ “电路三”响应时间很短,通流量较大,适用于可以接地的设备、部件或电路; ④ “电路四”响应时间较短,通流量较小,适用于可以接地的设备、部件或电路; ⑤ 所用器件的击穿电压(压敏电压)应低于被保护设备、部件或电路所能承受的最高电压,但要高于电路最高工作电压,通流量根据可能感应的最大静电荷量折算成的电流值选取。