激光二极管(半导体激光器)是一种利用半导体pn结将电流转换成光能并产生激光的电子器件。激光二极管具有优异的指向性和直进性,作为一种容易控制能量的光源,被广泛应用于光通信、医疗、感测、数据存储和休闲娱乐等领域。其基本原理是利用电子和空穴复合时产生的光。目前市场上已有不同波长和输出特性的众多产品。本文将详细介绍激光二极管的基本原理、结构、材料、种类和应用。 什么是激光二极管? 激光二极管(Laser Diode)也被称为“半导体激光器”。“激光”是“Light Amplification by Stimulated Emission of Radiation”的首字母缩写,意为“受激辐射光放大”。自然光和LED光即使波长恒定,其相位差不恒定,波形也不整齐。而激光是仅放大特定波长的“相干(coherent)”光。相干光源因其相位差恒定、波形一致,可利用干涉使焦点非常小(数um~),从而可用于光开关和光调制等各种应用中。 历史与发展 激光二极管的历史始于1917年,当时阿尔伯特·爱因斯坦首次将“受激辐射”现象形成理论,奠定了所有激光技术的基础。后来,德国人约翰·冯·诺依曼于1953年在一份未发表的手稿中描述了半导体激光器的概念。1957年,美国人戈登·古尔德提出可以利用受激辐射现象来放大光,并将其命名为“LASER(受激辐射光放大)”。就这样,随着各国科学家对激光器的研究不断取得进展,1962年同质结结构的砷化镓(GaAs)半导体激光器问世,相干光技术得到实际验证,同年,可见光振荡也获得成功。然而,这个时代的半导体激光器存在室温下连续振荡方面的课题。1970年,双异质结构的发现使得室温下的连续振荡成为可能。1970年代之后,半导体激光器技术迅速发展,并被广泛应用于各个领域。 激光二极管的发光原理 激光二极管是一种能发射特定波长激光的半导体器件。其基本结构由p型半导体和n型半导体组成的pn结、发射光的有源层、以及反射光的有涂层的镜面组成。激光二极管的发光原理是当电流流动时电子和空穴复合,此时辐射出的光子在有源层内被放大,并在谐振器内被反射,形成激光。我们先来了解一下激光二极管和LED共有的“发光半导体”的基本结构和发光原理。 二极管的基本结构和材料 半导体是导电性能介于导电的“导体”和不易导电的“绝缘体(非导体)”之间的物质。导体包括铁、金等金属物质,绝缘体包括橡胶、玻璃等物质。半导体可以通过使其导电或不导电来控制电流。另外,在某些使用方式下,还可以在光能和电能之间进行能量转换。 通常,二极管的元件主要由硅(Si)制成。硅(Si)是最典型的半导体材料。硅以“硅石(SiO2:主要成分是二氧化硅的石头”的形式存在于自然界中,是一种资源丰富的材料。因其易于加工而被广泛应用于很多半导体产品中。 硅(Si)作为半导体材料,本来是绝缘体,几乎没有作为载流子的自由电子。因此,通过向硅(Si)中添加其他杂质来提高硅(Si)中的载流子浓度,从而提高其电导率。像这样通过添加杂质来增加载流子的半导体被称为“杂质半导体”。载流子包括自由电子和自由空穴,其中使自由电子载流子增加的半导体称为“n型半导体”,使自由空穴载流子增加的半导体称为“p型半导体”。 * p型半导体(+:positive,空穴多的半导体)、n型半导体(-:negative,电子多的半导体) 二极管的元件是p型半导体和n型半导体连接的结构,称为“pn结”。p型半导体的引脚称为“阳极”,n型半导体的引脚称为“阴极”,电流是从阳极流向阴极的。 二极管的发光原理 当给pn结元件施加正向电压时,空穴(正)和电子(负)向结点方向移动并结合。此时产生的多余能量会被转化为光能,从而实现发光。这种现象称为“复合发光”。 下面我们使用pn结的能带图来说明此时载流子的移动情况。(左)表示未对pn结施加偏压的状态,(右)表示对pn结施加正向偏压的状态。当施加正向电压时,pn结处的能量势垒高度降低,n型区中的多数载流子(电子)如图所示穿过能量势垒并移动到p型区,与p型区的多数载流子(空穴)复合。此时,多余的能量会以光的形式释放出来。另一方面,p型区中的空穴移动到n型区并与n型区中的多数载流子(电子)复合,同样,多余的能量会以光的形式释放出来。 如图所示,导带和价带的能级存在差异,这种能量差称为“带隙”。另外,电子越过带隙从导带迁移到价带称为“电子跃迁”。也就是说,当电子从能量较高的导带跃迁到能量较低的价带并与空穴复合时,相当于其带隙的能量将以光子(光)的形式被释放出来。这就是半导体发光的原理。 激光二极管的材料、波长和发光颜色 激光二极管是一种利用半导体材料实现发光的器件。激光二极管的性能和特性会因所选的材料而有很大不同。普通的二极管会使用硅,但激光二极管会使用化合物半导体,因此其发光效率更高。激光二极管的选材会直接影响其波长、发光效率、工作温度等诸多特性。 下面,我们来详细了解一下激光二极管所用的化合物半导体的作用及其特点。 化合物半导体的作用 普通的二极管元件会采用“硅(Si)”这种材料,而激光二极管元件则使用“化合物半导体”材料。硅(Si)的发光跃迁概率(电流转变为光的概率)较低,几乎不发光,因此不适合用作激光二极管和LED等发光器件的材料。 像激光二极管和LED这类发光的半导体称为“直接跃迁型半导体”,不发光的半导体称为“间接跃迁型半导体”。在半导体中,电子会从能量较高的导带跃迁到能量较低的价带。此时的电子跃迁有“直接跃迁”和“间接跃迁”两种,具体取决于半导体材料。下图是间接跃迁和直接跃迁示意图。纵轴表示能量,横轴表示波数k。 A)发光的半导体“直接跃迁型半导体”(左图) 导带底和价带顶对应相同波数k(电子波的空间振动状态)的半导体称为“直接跃迁型半导体”。当电子在价带和导带之间跃迁时,波数k保持不变。也就是说,导带中被激发的电子将能量差——带隙Eg以光子(光)的形式释放出来,并跃迁到价带,与空穴复合。这可以获得很高的发光效率,从而被用作激光二极管和LED的材料。直接跃迁型半导体包括GaAs/AlGaAs、GaAlP/InGaAlP、GaN/InGaN等半导体。这种以多种元素为材料的半导体称为“化合物半导体”。特别是III族和V族元素相结合的III-V族化合物半导体,被广泛应用于激光二极管和LED等发光器件。 B)不发光的半导体“间接跃迁型半导体”(右图) 导带底和价带顶对应不同波数k的半导体称为“间接跃迁型半导体”。当电子在价带和导带之间跃迁时,波数k会发生变化。这种变化是由于声子(晶格振动的量子)的发射和吸收引起的,其能量会以热量的形式被释放出来。光子(光)的吸收和声子的吸收/发射需要同时发生。光子的发射对应的跃迁概率(发光跃迁概率)较低,发光效率较差,因此这种半导体不能用作发光器件。间接跃迁型半导体有Si和Ge。 波长范围和调整方法 激光二极管和LED材料——化合物半导体,会根据其材料的组成和比例而发出各种波长的光(红色和绿色等可见光、红外光、紫外光等)。基本发光波长取决于有源层——半导体的载流子(激发态的电子和空穴)复合时的带隙能量。 带隙能量(Eg)和波长(λ)之间的关系可以用下列公式来表示:Eg=hν=hc/λ(h:普朗克常数,ν:光子的振动频率,c:光速) 从这个关系式可以看出,带隙能量(Eg)与波长(λ)成反比。也就是说,带隙能量越大,光的波长λ越短。 激光二极管和LED等所用的化合物半导体是通过在半导体材料(衬底)上外延生长pn结的薄膜结晶而制成的。为了堆叠出良好的薄膜晶体,半导体衬底和各结晶层的晶格常数最好要匹配,而且,在选择材料时,不仅要考虑带隙能量,还需要考虑到晶格常数。 上图显示了以III-V族化合物半导体为主的晶格常数与带隙能量(=波长)之间的关系。带隙能量大的材料往往晶格常数小,反之,带隙能量小的材料往往晶格常数大。从该图可以看出,理论上,III-V族化合物半导体可以支持包括紫外光、可见光和红外光在内的广泛波段。例如,该图表明,当在GaAs衬底上生长GaInP的pn结时,晶格常数匹配良好,并且可以获得约650nm的发光波长。 发光颜色与波长的关系 LED可以在很宽的波长范围内发光,单色性好的激光二极管则不同,可发出波长几乎恒定的光。世界上有各种波长的激光,其中肉眼可以看到的波长的光被称为“可见光”。其代表性的波长如下: 可见光(人眼可以看见的光的范围) 材料和发光颜色 激光二极管(半导体激光器)的主要材料如下: 砷化镓(GaAs) : 最常见的激光二极管材料,能够支持很宽的波长范围。半导体制造技术非常发达,可实现高性能。 氮化镓(GaN) : 以开发出高效率的蓝光LED和高输出UV LED而闻名。 磷化铟(InP) : 被用于高速通信应用和近红外激光二极管。 激光二极管的制造工艺通常使用化学气相沉积(CVD)和被称为“分子束外延(MBE)”的技术。利用这些技术,可以生长质量非常高的膜层,从而能够制造出高精度的半导体激光器。另外,激光二极管的发光波长和输出功率可以通过半导体材料选择和制造工艺微调来控制。 激光二极管振荡原理 至此,我们已经介绍了激光二极管和LED共有的“发光半导体”的结构和材料。那么,激光二极管和LED之间有哪些不同呢?“激光(LASER)”是“Light Amplification by Stimulated Emission of Radiation”的首字母缩写,意为“受激辐射光放大”。顾名思义,激光的基本条件是受激辐射而放大的光,这一点与LED不同。接下来,我们将介绍激光二极管振荡的原理——光的“受激辐射”和“放大”。 受激辐射光放大 在前面提到过,在半导体中,当电子从导带跃迁到价带并与空穴复合时,其能量将以光的形式释放出来。发光方式有“自发辐射”和“受激辐射”两种。“自发辐射”是导带中的电子在彼此不相互作用的前提下分别与价带中的空穴复合并发光,一次复合辐射出一个光子。 正如前面提到的,光的波长取决于半导体中载流子复合时的带隙能量大小。然而,在实际的复合中,具有与带隙能量不同的较大能量的电子会与价带中的空穴复合,因此自发辐射的光具有随机的光子方向和相位。 而“受激辐射”中,当相当于导带和价带之间的带隙能量Eg的光λ1通过时,导带中的电子因与光的相互作用被激发,并跃迁到价带的基态。此时,会发射出能量(波长)相同、相位相同的光(光子)。最初只有一个光子,现在变成两个,这两个光子进一步激发导带的电子,变为四个光子……就这样,通过受激辐射不断增加,形成波长和相位相同的强光。以上就是激光的受激辐射产生原理。 光学谐振器 受激辐射具有光放大作用,要想实现激光振荡,就需要提高因该放大作用而获得的增益。因此,激光二极管采用的是两个反射面(镜面)彼此面对面放置,使光在它们之间反复往复的结构。这种光放大介质两侧具有平行反射面的结构称为“法布里-珀罗(Fabry-Perot)谐振器”,谐振器内部称为“谐振腔”。这种谐振器在大多数激光器(不仅仅是半导体激光二极管)的激光振荡中都发挥着重要作用。 但是,仅仅通过谐振腔使光往复,并不能让光发射到激光二极管外部。所以,为了使光从反射面射到外部,需要降低某一反射面的反射率,也就是需要反射一部分光并让另一部分光穿透过去。将反射面的反射率(或透射率)设置到最合适,是有效提高激光二极管发光效率的一个非常重要的因素。光在谐振腔内往复,当光被充分放大并达到一定强度时,就会穿透反射率较低的反射面。这就是激光振荡的原理。 通常,激光二极管采用将半导体的解理面用作反射面、光从解理面射出的结构。具有这种结构的激光二极管称为“边发射激光器(EEL:Edge Emitting Laser)”。 激光二极管的结构(光限制、载流子控制) 为了实现发光效率高的、实用的激光二极管,迄今为止,已经研究了多种结构。“光和载流子的限制”是有效提高激光二极管发光效率的重要因素。首先,我们来了解一下光限制的基本原理——光波导。 光波导 光具有容易被限制在高折射率部分的性质。在光波导中,光传播的部分称为“纤芯”,其周围的部分称为“包层”。纤芯的折射率n2高于包层的折射率n1,由于折射率的差异,光被限制在纤芯中。光在纤芯和包层之间的界面上反复进行全反射的同时向前传播。 利用这种光波导的例子之一是“光纤”。光纤由“纤芯”(负责光信号的传输)及其周围的“包层”以及表面涂层组成。由于包层使用的是折射率低于纤芯的材料,因此光被限制在纤芯内,并呈锯齿形路线在纤芯内向前传播。光的这些性质也被用于激光二极管的器件结构中。 双异质结 结构 为了有效提高光提取效率(提高发光效率),LED和激光二极管所用的半导体采用的是双异质结结构。通常,由不同材料组成的结称为“异质结”,具有两个异质结称为“双异质结”。双异质结呈三明治型结构,称为“有源层”的半导体层被夹在称为“包层”的n型和p型半导体之间。“有源层”是带隙能量较小的、关键的发光半导体,“包层”是带隙能量比有源层大的半导体。 双异质结构有“光限制”和“载流子限制”两种作用。 光限制:通过使用折射率高的层作为有源层,使用折射率低的层作为包层,可以像光纤一样将光限制在中央的有源层区域。 载流子限制: 另外还可以将载流子(电子和空穴)限制在有源层内。下面我们使用双异质结的能带图来介绍其具体作用。 在上图中,左侧是未向双异质结施加偏压的状态。 n型包层中存在很多电子,但有源层和n型包层之间有能量势垒,另外由于带隙差,有源层和p型包层之间也存在能量势垒。因此,电子不能进入有源层,而是滞留在n型包层中。而空穴则由于有源层和p型包层之间没有能量势垒而能够进入有源层。 右图表示对该结构施加正向电压时的状态。 n型包层中的电子由于能量势垒消失而可以移动到有源层。但是,由于带隙差,有源层和p型包层之间的能量势垒仍然存在,因此电子会被阻挡并滞留在有源层中。来自p型包层的空穴也同样滞留在有源层中。来自n型包层的电子和来自p型包层的空穴会在有源层内复合发光。这种结构可将载流子(电子和空穴)限制在有源层中,载流子的密度会非常高,从而使复合率变高。这种效应称为“载流子限制效应”。利用这种效应,可以制造出发光效率高的半导体。 光限制和载流子控制 激光二极管元件的基本结构是双异质结构。整个p型面和n型面附有电极的激光器称为“广域激光二极管(Broad area laser,大面积激光二极管)”。在这种结构中,电流的流动范围很宽,因此激光会从有源层的较宽范围发射出来。这种结构需要非常大的电流,不适合实际应用。针对这种情况,业内设计出使电流仅注入到部分有源层的条型结构激光器。其中,“内部条形激光器”是主流产品,这种激光器在有源层周围嵌入了折射率比有源层低的层。与光纤的原理相同,光会被限制在有源层中。 采用这种结构的激光器,振荡模式稳定,实用性强,因此目前大多数激光二极管都采用这种结构。 也就是说,激光二极管的有源层结构不仅使光由于双异质结在垂直方向上被限制,还由于嵌入条形结构而在水平方向上被限制。通过这样的结构设计,高发光效率的激光二极管得以投入实际应用。 目前,为了进一步提高发光效率,将多个有源层堆叠在一起的“堆叠式激光二极管”已经投入实际使用,相关的产品也越来越多样化。这也使激光二极管的应用范围非常广。以往,激光二极管的主要市场是CD和DVD等光盘的提取、激光打印机和MFP(Multi-Function Printer,多功能打印机)的感光等应用;如今,还被用作光学传感器的光源,并且市场需求在不断扩大。特别是近年来,随着数百瓦级的高输出激光二极管的开发,还有望用作汽车自动驾驶所需的LiDAR光源。 激光二极管与自然光和LED光的区别 激光二极管(半导体激光器)和LED都是使用了半导体元件的光源,它们产生光的机制相似。两者的区别在于是否发生“受激辐射”。LED产生的光会直接发射出来(自发辐射),而半导体激光器的发光属于“受激辐射”,利用谐振结构,使自己产生的光在有源层内往复并放大,最终形成相位一致的更强的光。以这种方式发射的激光与LED光和自然光相比,具有以下特性: 1. 指向性和直进性好 LED和自然光的波长、相位和方向是随机的,因此光容易向各个方向分散。而激光则传播方向非常集中,指向性非常高。这是因为半导体激光器的原理使其能够产生波长相同、相位相同、集中在同一方向的光,因此即使距离光源很远,光也几乎不会扩散,仍然会保持一个方向、保持强光直线向前发射。这种特性是激光二极管得以用在众多应用中的原因之一。 2. 单色性好 激光二极管发出的光具有单色性好、波长窄、即使通过棱镜也很难被分解的特点。这是因为激光的波长、相位和方向相同。因此,可以有效产生特定波长的光,从而实现明亮且色彩复现性高的光。从下图也可以看出,与LED光相比,激光集中在特定的波长上。 而太阳光等自然光是各种颜色波长的混合体,因此通过棱镜时会被分解成七种颜色的光。LED光的波长范围也很宽,而波长范围宽会使光的强度将低。 使用棱镜进行分光 由于激光的单色性好,适用于需要特定波长的光学检测和激光治疗等领域。 3. 相干性好,能量密度高 激光的相干性优异,因此多束激光可以相互干涉并形成更强的光。这是因为激光的波长恒定,而该波长的光是相位相同的“相干光”。多个激光二极管发出的光彼此相位一致,因此当光重叠时会相互放大。 而LED和自然光则因为含有多个波长的光,而且这些波长的光相位不同,所以当光重叠时,不会相互干涉并变强。另外,由于激光的方向和相位非常一致,因此聚光性优异,更容易将光能集中在一个方向上。例如,当太阳光通过透镜聚光时,其能量可以燃烧纸张,而激光因为能量更集中,所以甚至可以达到熔化金属的高能量密度。 激光二极管的种类 激光的种类 激光被广泛应用于医疗、工业、通信等领域,根据其介质材料的不同,激光可分为几类。除了本文中介绍的激光二极管外,还有以下几种: 固体激光器:采用固体材料(半导体除外)作为激光介质的激光器,代表性的产品有红宝石激光器和YAG激光器。红宝石激光器是世界上最早的激光器。波长为1064nm的YAG激光器是以矿石为介质的,已被广泛应用于金属加工等工业应用。通常,即使激光介质都是固体的,但采用半导体材料的激光器因其性质有很大不同而被归类为激光二极管。 液体激光器:采用液体作为激光介质的激光器,根据所使用介质的特性主要被分为“有机染料激光器”、“有机螯合物激光器”、“无机激光器”三种。其中具有代表性的是“有机染料激光器”,它使用有机染料(将染料分子溶解在有机溶剂中制成)作为介质,是一种可以通过溶解在有机溶剂中的染料分子连续选择波长(包括可见光)的“波长可调谐激光器”。这种激光器被广泛应用于光谱测量和分析等理学领域。 气体激光器:采用气体作为激光介质。与其他激光器相比,具有激光介质均匀且损耗少、输出功率高的特点。具有代表性的气体激光器之一是二氧化碳激光器(CO2激光器),因其输出功率高且适用于各种材料的加工和焊接而在工业领域中得到广泛应用。另外,还作为激光手术刀被用于医疗领域。 激光二极管(半导体激光器)的种类 激光二极管可以根据光的发射方向进行分类。 边发射激光器(EEL:Edge Emitting Laser):采用将半导体的解理面用作反射镜、使光从解理面发射的结构。 面发射激光器(SEL:Surface Emitting Laser):采用使光从半导体衬底表面垂直发射的结构。 垂直腔面发射激光器(VCSEL:Vertical Cavity Surface Emitting Laser):在半导体衬底表面的垂直方向上形成光学谐振腔,发出的激光束与衬底表面垂直。具有阈值电流小、能以低电流高速调制、温度稳定性好等特点,被广泛应用于光通信和传感器领域。 垂直腔面发射激光器 这些不同种类的激光二极管具有不同的特性,目前已根据它们的特性广泛应用在各种用途中。 激光二极管的封装 目前,激光二极管使用较多的封装形式是CAN封装,这种封装具有圆柱形的金属机身,前端有出光口。通常具有以下特点: 激光二极管的封装:CAN封装示例 激光二极管的封装:框架封装示例 外形尺寸:直径3.8mm~5.6mm,高度2.5mm~6mm。行业标准尺寸5.6mmφ CAN型封装是主流产品。在Quad Beam LD和部分通信系统中,会使用诸如9.0mmφ的较大尺寸产品。在注重成本的光盘领域,也使用框架采用树脂材质的产品。 机身材质:通常采用黄铜、不锈钢、铝等金属。出光口:前端有一个很细的窗口,激光从该窗口射出。出光口通常由硅或玻璃制成,直径范围约100μm~500μm。在注重成本的应用中,也会使用不带盖玻盖片的产品。 引脚排列:CAN封装通常有2个或3个引脚。如果是2个引脚,引脚分别用于激光二极管和PIN光电二极管;如果是3个引脚,则添加了温度感测用的引脚。 近年来,市场上也销售表贴型封装和裸芯片产品,预计激光二极管的应用领域会进一步扩大。 激光二极管的寿命 激光二极管的平均寿命取决于工作环境(使用温度、静电、电源噪声等),通常认为在正常条件(外壳温度25℃)下可连续点亮约10,000小时。如果使用时的工作温度高,会使使用寿命缩短,另外静电放电(ESD)也会导致故障。此外,电源产生的浪涌和噪声也可能会损坏激光器元件。 要想长期使用激光二极管,采用散热器等散热措施、充分的防静电和防浪涌措施、使用噪声滤波器、将输出控制在所需要最低限度等措施,都可以有效延长使用寿命。 激光器发射的光具有很高的功率密度,如果使用不当,即使很小的发射量,也可能会对人体造成伤害,非常危险。因此,使用前必须采取充分的安全措施。 激光二极管的应用 1. 光盘(CD、DVD、BD) 在CD、DVD、BD等被称为“光盘”的数字存储介质中,激光二极管可用于光学拾音器(用于播放和存储数据的装置)。可利用激光可读取(播放)音乐、视频等数据,反之还可以写入(存储)信息。 可利用激光来检测是否存在轻微的凹凸,并将其转换为声音和视频等电信号。CD主要使用红外激光器,DVD主要使用红光激光器。蓝光光盘和下一代DVD的拾音器主要使用蓝光激光器,因为波长越短,激光束越窄,就可以保存和播放更多的信息。 光盘应用示例 光的波长 2. 激光打印机、MFP(Multi-Function Printer,多功能打印机)等 聚光性优异的激光二极管适用于激光打印机和多功能打印机的感光应用。通过照射感光鼓将信号转移到纸上。激光打印机的打印速度快、打印质量好,因而被广泛应用于需要大量印刷的商业用途。 3. 光通信 适用波长1300nm~的红外激光器。这种激光器的功率损耗小,而且可以将大量信息转换成光信号并远距离传输,因而被用作光纤通信的光源。另外还适用于需要高速通信的无线通信系统中的光数据传输应用,在越来越需要长距离高速传输的通信领域,其精度也越来越高。 4. 激光显微镜 激光显微镜通过用激光照射对象物并检测其反射的光来观察对象物。通过使用波长比可见光短的激光,可用更高分辨率进行观察。 5. 激光笔、激光墨线仪 由于激光的直进性好,所以也适用于激光笔。另外还适用于在天花板和墙壁上标记垂直和水平的墨线仪,在建筑工地进行安装和施工时用来做标记。 6. 光学测距和3D传感器 激光二极管的线性度高,精度也高,因此还适用于光学检测。利用激光测量对象物的距离和形状的LiDAR(Light Detection and Ranging),适用于汽车的自动驾驶系统和航空测量,也适用于智能手机和AR耳机等应用。此外,在测速和引力波探测等众多领域的应用也在不断扩大。 7. 烟雾和粉尘传感器 激光二极管还可用作传感器的光源。通过激光与烟雾和空气中的微细粉尘碰撞并散射来检测是否有烟雾或粉尘。 8. 激光治疗 在医疗领域,可利用光动力效应进行疾病诊断和治疗、手术和放射治疗等,例如皮肤治疗、眼科手术、牙科治疗和内窥镜手术等,预计未来应用范围会进一步扩大。 9. 材料加工 激光二极管可以产生高输出功率的光,因此可用作金属、塑料、陶瓷等材料加工的光源。激光加工可实现高精度、高速加工,也适用于难加工材料的切割、钻孔等应用。 10. 娱乐 激光二极管还适用于现场表演、音乐会和投影映射等娱乐应用。利用激光的特性,可以打造出奇幻的演出效果。
激光二极管(半导体激光器)是一种利用半导体pn结将电流转换成光能并产生激光的电子器件。激光二极管具有优异的指向性和直进性,作为一种容易控制能量的光源,被广泛应用于光通信、医疗、感测、数据存储和休闲娱乐等领域。其基本原理是利用电子和空穴复合时产生的光。目前市场上已有不同波长和输出特性的众多产品。本文将详细介绍激光二极管的基本原理、结构、材料、种类和应用。 什么是激光二极管? 激光二极管(Laser Diode)也被称为“半导体激光器”。“激光”是“Light Amplification by Stimulated Emission of Radiation”的首字母缩写,意为“受激辐射光放大”。自然光和LED光即使波长恒定,其相位差不恒定,波形也不整齐。而激光是仅放大特定波长的“相干(coherent)”光。相干光源因其相位差恒定、波形一致,可利用干涉使焦点非常小(数um~),从而可用于光开关和光调制等各种应用中。 历史与发展 激光二极管的历史始于1917年,当时阿尔伯特·爱因斯坦首次将“受激辐射”现象形成理论,奠定了所有激光技术的基础。后来,德国人约翰·冯·诺依曼于1953年在一份未发表的手稿中描述了半导体激光器的概念。1957年,美国人戈登·古尔德提出可以利用受激辐射现象来放大光,并将其命名为“LASER(受激辐射光放大)”。就这样,随着各国科学家对激光器的研究不断取得进展,1962年同质结结构的砷化镓(GaAs)半导体激光器问世,相干光技术得到实际验证,同年,可见光振荡也获得成功。然而,这个时代的半导体激光器存在室温下连续振荡方面的课题。1970年,双异质结构的发现使得室温下的连续振荡成为可能。1970年代之后,半导体激光器技术迅速发展,并被广泛应用于各个领域。 激光二极管的发光原理 激光二极管是一种能发射特定波长激光的半导体器件。其基本结构由p型半导体和n型半导体组成的pn结、发射光的有源层、以及反射光的有涂层的镜面组成。激光二极管的发光原理是当电流流动时电子和空穴复合,此时辐射出的光子在有源层内被放大,并在谐振器内被反射,形成激光。我们先来了解一下激光二极管和LED共有的“发光半导体”的基本结构和发光原理。 二极管的基本结构和材料 半导体是导电性能介于导电的“导体”和不易导电的“绝缘体(非导体)”之间的物质。导体包括铁、金等金属物质,绝缘体包括橡胶、玻璃等物质。半导体可以通过使其导电或不导电来控制电流。另外,在某些使用方式下,还可以在光能和电能之间进行能量转换。 通常,二极管的元件主要由硅(Si)制成。硅(Si)是最典型的半导体材料。硅以“硅石(SiO2:主要成分是二氧化硅的石头”的形式存在于自然界中,是一种资源丰富的材料。因其易于加工而被广泛应用于很多半导体产品中。 硅(Si)作为半导体材料,本来是绝缘体,几乎没有作为载流子的自由电子。因此,通过向硅(Si)中添加其他杂质来提高硅(Si)中的载流子浓度,从而提高其电导率。像这样通过添加杂质来增加载流子的半导体被称为“杂质半导体”。载流子包括自由电子和自由空穴,其中使自由电子载流子增加的半导体称为“n型半导体”,使自由空穴载流子增加的半导体称为“p型半导体”。 * p型半导体(+:positive,空穴多的半导体)、n型半导体(-:negative,电子多的半导体) 二极管的元件是p型半导体和n型半导体连接的结构,称为“pn结”。p型半导体的引脚称为“阳极”,n型半导体的引脚称为“阴极”,电流是从阳极流向阴极的。 二极管的发光原理 当给pn结元件施加正向电压时,空穴(正)和电子(负)向结点方向移动并结合。此时产生的多余能量会被转化为光能,从而实现发光。这种现象称为“复合发光”。 下面我们使用pn结的能带图来说明此时载流子的移动情况。(左)表示未对pn结施加偏压的状态,(右)表示对pn结施加正向偏压的状态。当施加正向电压时,pn结处的能量势垒高度降低,n型区中的多数载流子(电子)如图所示穿过能量势垒并移动到p型区,与p型区的多数载流子(空穴)复合。此时,多余的能量会以光的形式释放出来。另一方面,p型区中的空穴移动到n型区并与n型区中的多数载流子(电子)复合,同样,多余的能量会以光的形式释放出来。 如图所示,导带和价带的能级存在差异,这种能量差称为“带隙”。另外,电子越过带隙从导带迁移到价带称为“电子跃迁”。也就是说,当电子从能量较高的导带跃迁到能量较低的价带并与空穴复合时,相当于其带隙的能量将以光子(光)的形式被释放出来。这就是半导体发光的原理。 激光二极管的材料、波长和发光颜色 激光二极管是一种利用半导体材料实现发光的器件。激光二极管的性能和特性会因所选的材料而有很大不同。普通的二极管会使用硅,但激光二极管会使用化合物半导体,因此其发光效率更高。激光二极管的选材会直接影响其波长、发光效率、工作温度等诸多特性。 下面,我们来详细了解一下激光二极管所用的化合物半导体的作用及其特点。 化合物半导体的作用 普通的二极管元件会采用“硅(Si)”这种材料,而激光二极管元件则使用“化合物半导体”材料。硅(Si)的发光跃迁概率(电流转变为光的概率)较低,几乎不发光,因此不适合用作激光二极管和LED等发光器件的材料。 像激光二极管和LED这类发光的半导体称为“直接跃迁型半导体”,不发光的半导体称为“间接跃迁型半导体”。在半导体中,电子会从能量较高的导带跃迁到能量较低的价带。此时的电子跃迁有“直接跃迁”和“间接跃迁”两种,具体取决于半导体材料。下图是间接跃迁和直接跃迁示意图。纵轴表示能量,横轴表示波数k。 A)发光的半导体“直接跃迁型半导体”(左图) 导带底和价带顶对应相同波数k(电子波的空间振动状态)的半导体称为“直接跃迁型半导体”。当电子在价带和导带之间跃迁时,波数k保持不变。也就是说,导带中被激发的电子将能量差——带隙Eg以光子(光)的形式释放出来,并跃迁到价带,与空穴复合。这可以获得很高的发光效率,从而被用作激光二极管和LED的材料。直接跃迁型半导体包括GaAs/AlGaAs、GaAlP/InGaAlP、GaN/InGaN等半导体。这种以多种元素为材料的半导体称为“化合物半导体”。特别是III族和V族元素相结合的III-V族化合物半导体,被广泛应用于激光二极管和LED等发光器件。 B)不发光的半导体“间接跃迁型半导体”(右图) 导带底和价带顶对应不同波数k的半导体称为“间接跃迁型半导体”。当电子在价带和导带之间跃迁时,波数k会发生变化。这种变化是由于声子(晶格振动的量子)的发射和吸收引起的,其能量会以热量的形式被释放出来。光子(光)的吸收和声子的吸收/发射需要同时发生。光子的发射对应的跃迁概率(发光跃迁概率)较低,发光效率较差,因此这种半导体不能用作发光器件。间接跃迁型半导体有Si和Ge。 波长范围和调整方法 激光二极管和LED材料——化合物半导体,会根据其材料的组成和比例而发出各种波长的光(红色和绿色等可见光、红外光、紫外光等)。基本发光波长取决于有源层——半导体的载流子(激发态的电子和空穴)复合时的带隙能量。 带隙能量(Eg)和波长(λ)之间的关系可以用下列公式来表示:Eg=hν=hc/λ(h:普朗克常数,ν:光子的振动频率,c:光速) 从这个关系式可以看出,带隙能量(Eg)与波长(λ)成反比。也就是说,带隙能量越大,光的波长λ越短。 激光二极管和LED等所用的化合物半导体是通过在半导体材料(衬底)上外延生长pn结的薄膜结晶而制成的。为了堆叠出良好的薄膜晶体,半导体衬底和各结晶层的晶格常数最好要匹配,而且,在选择材料时,不仅要考虑带隙能量,还需要考虑到晶格常数。 上图显示了以III-V族化合物半导体为主的晶格常数与带隙能量(=波长)之间的关系。带隙能量大的材料往往晶格常数小,反之,带隙能量小的材料往往晶格常数大。从该图可以看出,理论上,III-V族化合物半导体可以支持包括紫外光、可见光和红外光在内的广泛波段。例如,该图表明,当在GaAs衬底上生长GaInP的pn结时,晶格常数匹配良好,并且可以获得约650nm的发光波长。 发光颜色与波长的关系 LED可以在很宽的波长范围内发光,单色性好的激光二极管则不同,可发出波长几乎恒定的光。世界上有各种波长的激光,其中肉眼可以看到的波长的光被称为“可见光”。其代表性的波长如下: 可见光(人眼可以看见的光的范围) 材料和发光颜色 激光二极管(半导体激光器)的主要材料如下: 砷化镓(GaAs) : 最常见的激光二极管材料,能够支持很宽的波长范围。半导体制造技术非常发达,可实现高性能。 氮化镓(GaN) : 以开发出高效率的蓝光LED和高输出UV LED而闻名。 磷化铟(InP) : 被用于高速通信应用和近红外激光二极管。 激光二极管的制造工艺通常使用化学气相沉积(CVD)和被称为“分子束外延(MBE)”的技术。利用这些技术,可以生长质量非常高的膜层,从而能够制造出高精度的半导体激光器。另外,激光二极管的发光波长和输出功率可以通过半导体材料选择和制造工艺微调来控制。 激光二极管振荡原理 至此,我们已经介绍了激光二极管和LED共有的“发光半导体”的结构和材料。那么,激光二极管和LED之间有哪些不同呢?“激光(LASER)”是“Light Amplification by Stimulated Emission of Radiation”的首字母缩写,意为“受激辐射光放大”。顾名思义,激光的基本条件是受激辐射而放大的光,这一点与LED不同。接下来,我们将介绍激光二极管振荡的原理——光的“受激辐射”和“放大”。 受激辐射光放大 在前面提到过,在半导体中,当电子从导带跃迁到价带并与空穴复合时,其能量将以光的形式释放出来。发光方式有“自发辐射”和“受激辐射”两种。“自发辐射”是导带中的电子在彼此不相互作用的前提下分别与价带中的空穴复合并发光,一次复合辐射出一个光子。 正如前面提到的,光的波长取决于半导体中载流子复合时的带隙能量大小。然而,在实际的复合中,具有与带隙能量不同的较大能量的电子会与价带中的空穴复合,因此自发辐射的光具有随机的光子方向和相位。 而“受激辐射”中,当相当于导带和价带之间的带隙能量Eg的光λ1通过时,导带中的电子因与光的相互作用被激发,并跃迁到价带的基态。此时,会发射出能量(波长)相同、相位相同的光(光子)。最初只有一个光子,现在变成两个,这两个光子进一步激发导带的电子,变为四个光子……就这样,通过受激辐射不断增加,形成波长和相位相同的强光。以上就是激光的受激辐射产生原理。 光学谐振器 受激辐射具有光放大作用,要想实现激光振荡,就需要提高因该放大作用而获得的增益。因此,激光二极管采用的是两个反射面(镜面)彼此面对面放置,使光在它们之间反复往复的结构。这种光放大介质两侧具有平行反射面的结构称为“法布里-珀罗(Fabry-Perot)谐振器”,谐振器内部称为“谐振腔”。这种谐振器在大多数激光器(不仅仅是半导体激光二极管)的激光振荡中都发挥着重要作用。 但是,仅仅通过谐振腔使光往复,并不能让光发射到激光二极管外部。所以,为了使光从反射面射到外部,需要降低某一反射面的反射率,也就是需要反射一部分光并让另一部分光穿透过去。将反射面的反射率(或透射率)设置到最合适,是有效提高激光二极管发光效率的一个非常重要的因素。光在谐振腔内往复,当光被充分放大并达到一定强度时,就会穿透反射率较低的反射面。这就是激光振荡的原理。 通常,激光二极管采用将半导体的解理面用作反射面、光从解理面射出的结构。具有这种结构的激光二极管称为“边发射激光器(EEL:Edge Emitting Laser)”。 激光二极管的结构(光限制、载流子控制) 为了实现发光效率高的、实用的激光二极管,迄今为止,已经研究了多种结构。“光和载流子的限制”是有效提高激光二极管发光效率的重要因素。首先,我们来了解一下光限制的基本原理——光波导。 光波导 光具有容易被限制在高折射率部分的性质。在光波导中,光传播的部分称为“纤芯”,其周围的部分称为“包层”。纤芯的折射率n2高于包层的折射率n1,由于折射率的差异,光被限制在纤芯中。光在纤芯和包层之间的界面上反复进行全反射的同时向前传播。 利用这种光波导的例子之一是“光纤”。光纤由“纤芯”(负责光信号的传输)及其周围的“包层”以及表面涂层组成。由于包层使用的是折射率低于纤芯的材料,因此光被限制在纤芯内,并呈锯齿形路线在纤芯内向前传播。光的这些性质也被用于激光二极管的器件结构中。 双异质结 结构 为了有效提高光提取效率(提高发光效率),LED和激光二极管所用的半导体采用的是双异质结结构。通常,由不同材料组成的结称为“异质结”,具有两个异质结称为“双异质结”。双异质结呈三明治型结构,称为“有源层”的半导体层被夹在称为“包层”的n型和p型半导体之间。“有源层”是带隙能量较小的、关键的发光半导体,“包层”是带隙能量比有源层大的半导体。 双异质结构有“光限制”和“载流子限制”两种作用。 光限制:通过使用折射率高的层作为有源层,使用折射率低的层作为包层,可以像光纤一样将光限制在中央的有源层区域。 载流子限制: 另外还可以将载流子(电子和空穴)限制在有源层内。下面我们使用双异质结的能带图来介绍其具体作用。 在上图中,左侧是未向双异质结施加偏压的状态。 n型包层中存在很多电子,但有源层和n型包层之间有能量势垒,另外由于带隙差,有源层和p型包层之间也存在能量势垒。因此,电子不能进入有源层,而是滞留在n型包层中。而空穴则由于有源层和p型包层之间没有能量势垒而能够进入有源层。 右图表示对该结构施加正向电压时的状态。 n型包层中的电子由于能量势垒消失而可以移动到有源层。但是,由于带隙差,有源层和p型包层之间的能量势垒仍然存在,因此电子会被阻挡并滞留在有源层中。来自p型包层的空穴也同样滞留在有源层中。来自n型包层的电子和来自p型包层的空穴会在有源层内复合发光。这种结构可将载流子(电子和空穴)限制在有源层中,载流子的密度会非常高,从而使复合率变高。这种效应称为“载流子限制效应”。利用这种效应,可以制造出发光效率高的半导体。 光限制和载流子控制 激光二极管元件的基本结构是双异质结构。整个p型面和n型面附有电极的激光器称为“广域激光二极管(Broad area laser,大面积激光二极管)”。在这种结构中,电流的流动范围很宽,因此激光会从有源层的较宽范围发射出来。这种结构需要非常大的电流,不适合实际应用。针对这种情况,业内设计出使电流仅注入到部分有源层的条型结构激光器。其中,“内部条形激光器”是主流产品,这种激光器在有源层周围嵌入了折射率比有源层低的层。与光纤的原理相同,光会被限制在有源层中。 采用这种结构的激光器,振荡模式稳定,实用性强,因此目前大多数激光二极管都采用这种结构。 也就是说,激光二极管的有源层结构不仅使光由于双异质结在垂直方向上被限制,还由于嵌入条形结构而在水平方向上被限制。通过这样的结构设计,高发光效率的激光二极管得以投入实际应用。 目前,为了进一步提高发光效率,将多个有源层堆叠在一起的“堆叠式激光二极管”已经投入实际使用,相关的产品也越来越多样化。这也使激光二极管的应用范围非常广。以往,激光二极管的主要市场是CD和DVD等光盘的提取、激光打印机和MFP(Multi-Function Printer,多功能打印机)的感光等应用;如今,还被用作光学传感器的光源,并且市场需求在不断扩大。特别是近年来,随着数百瓦级的高输出激光二极管的开发,还有望用作汽车自动驾驶所需的LiDAR光源。 激光二极管与自然光和LED光的区别 激光二极管(半导体激光器)和LED都是使用了半导体元件的光源,它们产生光的机制相似。两者的区别在于是否发生“受激辐射”。LED产生的光会直接发射出来(自发辐射),而半导体激光器的发光属于“受激辐射”,利用谐振结构,使自己产生的光在有源层内往复并放大,最终形成相位一致的更强的光。以这种方式发射的激光与LED光和自然光相比,具有以下特性: 1. 指向性和直进性好 LED和自然光的波长、相位和方向是随机的,因此光容易向各个方向分散。而激光则传播方向非常集中,指向性非常高。这是因为半导体激光器的原理使其能够产生波长相同、相位相同、集中在同一方向的光,因此即使距离光源很远,光也几乎不会扩散,仍然会保持一个方向、保持强光直线向前发射。这种特性是激光二极管得以用在众多应用中的原因之一。 2. 单色性好 激光二极管发出的光具有单色性好、波长窄、即使通过棱镜也很难被分解的特点。这是因为激光的波长、相位和方向相同。因此,可以有效产生特定波长的光,从而实现明亮且色彩复现性高的光。从下图也可以看出,与LED光相比,激光集中在特定的波长上。 而太阳光等自然光是各种颜色波长的混合体,因此通过棱镜时会被分解成七种颜色的光。LED光的波长范围也很宽,而波长范围宽会使光的强度将低。 使用棱镜进行分光 由于激光的单色性好,适用于需要特定波长的光学检测和激光治疗等领域。 3. 相干性好,能量密度高 激光的相干性优异,因此多束激光可以相互干涉并形成更强的光。这是因为激光的波长恒定,而该波长的光是相位相同的“相干光”。多个激光二极管发出的光彼此相位一致,因此当光重叠时会相互放大。 而LED和自然光则因为含有多个波长的光,而且这些波长的光相位不同,所以当光重叠时,不会相互干涉并变强。另外,由于激光的方向和相位非常一致,因此聚光性优异,更容易将光能集中在一个方向上。例如,当太阳光通过透镜聚光时,其能量可以燃烧纸张,而激光因为能量更集中,所以甚至可以达到熔化金属的高能量密度。 激光二极管的种类 激光的种类 激光被广泛应用于医疗、工业、通信等领域,根据其介质材料的不同,激光可分为几类。除了本文中介绍的激光二极管外,还有以下几种: 固体激光器:采用固体材料(半导体除外)作为激光介质的激光器,代表性的产品有红宝石激光器和YAG激光器。红宝石激光器是世界上最早的激光器。波长为1064nm的YAG激光器是以矿石为介质的,已被广泛应用于金属加工等工业应用。通常,即使激光介质都是固体的,但采用半导体材料的激光器因其性质有很大不同而被归类为激光二极管。 液体激光器:采用液体作为激光介质的激光器,根据所使用介质的特性主要被分为“有机染料激光器”、“有机螯合物激光器”、“无机激光器”三种。其中具有代表性的是“有机染料激光器”,它使用有机染料(将染料分子溶解在有机溶剂中制成)作为介质,是一种可以通过溶解在有机溶剂中的染料分子连续选择波长(包括可见光)的“波长可调谐激光器”。这种激光器被广泛应用于光谱测量和分析等理学领域。 气体激光器:采用气体作为激光介质。与其他激光器相比,具有激光介质均匀且损耗少、输出功率高的特点。具有代表性的气体激光器之一是二氧化碳激光器(CO2激光器),因其输出功率高且适用于各种材料的加工和焊接而在工业领域中得到广泛应用。另外,还作为激光手术刀被用于医疗领域。 激光二极管(半导体激光器)的种类 激光二极管可以根据光的发射方向进行分类。 边发射激光器(EEL:Edge Emitting Laser):采用将半导体的解理面用作反射镜、使光从解理面发射的结构。 面发射激光器(SEL:Surface Emitting Laser):采用使光从半导体衬底表面垂直发射的结构。 垂直腔面发射激光器(VCSEL:Vertical Cavity Surface Emitting Laser):在半导体衬底表面的垂直方向上形成光学谐振腔,发出的激光束与衬底表面垂直。具有阈值电流小、能以低电流高速调制、温度稳定性好等特点,被广泛应用于光通信和传感器领域。 垂直腔面发射激光器 这些不同种类的激光二极管具有不同的特性,目前已根据它们的特性广泛应用在各种用途中。 激光二极管的封装 目前,激光二极管使用较多的封装形式是CAN封装,这种封装具有圆柱形的金属机身,前端有出光口。通常具有以下特点: 激光二极管的封装:CAN封装示例 激光二极管的封装:框架封装示例 外形尺寸:直径3.8mm~5.6mm,高度2.5mm~6mm。行业标准尺寸5.6mmφ CAN型封装是主流产品。在Quad Beam LD和部分通信系统中,会使用诸如9.0mmφ的较大尺寸产品。在注重成本的光盘领域,也使用框架采用树脂材质的产品。 机身材质:通常采用黄铜、不锈钢、铝等金属。出光口:前端有一个很细的窗口,激光从该窗口射出。出光口通常由硅或玻璃制成,直径范围约100μm~500μm。在注重成本的应用中,也会使用不带盖玻盖片的产品。 引脚排列:CAN封装通常有2个或3个引脚。如果是2个引脚,引脚分别用于激光二极管和PIN光电二极管;如果是3个引脚,则添加了温度感测用的引脚。 近年来,市场上也销售表贴型封装和裸芯片产品,预计激光二极管的应用领域会进一步扩大。 激光二极管的寿命 激光二极管的平均寿命取决于工作环境(使用温度、静电、电源噪声等),通常认为在正常条件(外壳温度25℃)下可连续点亮约10,000小时。如果使用时的工作温度高,会使使用寿命缩短,另外静电放电(ESD)也会导致故障。此外,电源产生的浪涌和噪声也可能会损坏激光器元件。 要想长期使用激光二极管,采用散热器等散热措施、充分的防静电和防浪涌措施、使用噪声滤波器、将输出控制在所需要最低限度等措施,都可以有效延长使用寿命。 激光器发射的光具有很高的功率密度,如果使用不当,即使很小的发射量,也可能会对人体造成伤害,非常危险。因此,使用前必须采取充分的安全措施。 激光二极管的应用 1. 光盘(CD、DVD、BD) 在CD、DVD、BD等被称为“光盘”的数字存储介质中,激光二极管可用于光学拾音器(用于播放和存储数据的装置)。可利用激光可读取(播放)音乐、视频等数据,反之还可以写入(存储)信息。 可利用激光来检测是否存在轻微的凹凸,并将其转换为声音和视频等电信号。CD主要使用红外激光器,DVD主要使用红光激光器。蓝光光盘和下一代DVD的拾音器主要使用蓝光激光器,因为波长越短,激光束越窄,就可以保存和播放更多的信息。 光盘应用示例 光的波长 2. 激光打印机、MFP(Multi-Function Printer,多功能打印机)等 聚光性优异的激光二极管适用于激光打印机和多功能打印机的感光应用。通过照射感光鼓将信号转移到纸上。激光打印机的打印速度快、打印质量好,因而被广泛应用于需要大量印刷的商业用途。 3. 光通信 适用波长1300nm~的红外激光器。这种激光器的功率损耗小,而且可以将大量信息转换成光信号并远距离传输,因而被用作光纤通信的光源。另外还适用于需要高速通信的无线通信系统中的光数据传输应用,在越来越需要长距离高速传输的通信领域,其精度也越来越高。 4. 激光显微镜 激光显微镜通过用激光照射对象物并检测其反射的光来观察对象物。通过使用波长比可见光短的激光,可用更高分辨率进行观察。 5. 激光笔、激光墨线仪 由于激光的直进性好,所以也适用于激光笔。另外还适用于在天花板和墙壁上标记垂直和水平的墨线仪,在建筑工地进行安装和施工时用来做标记。 6. 光学测距和3D传感器 激光二极管的线性度高,精度也高,因此还适用于光学检测。利用激光测量对象物的距离和形状的LiDAR(Light Detection and Ranging),适用于汽车的自动驾驶系统和航空测量,也适用于智能手机和AR耳机等应用。此外,在测速和引力波探测等众多领域的应用也在不断扩大。 7. 烟雾和粉尘传感器 激光二极管还可用作传感器的光源。通过激光与烟雾和空气中的微细粉尘碰撞并散射来检测是否有烟雾或粉尘。 8. 激光治疗 在医疗领域,可利用光动力效应进行疾病诊断和治疗、手术和放射治疗等,例如皮肤治疗、眼科手术、牙科治疗和内窥镜手术等,预计未来应用范围会进一步扩大。 9. 材料加工 激光二极管可以产生高输出功率的光,因此可用作金属、塑料、陶瓷等材料加工的光源。激光加工可实现高精度、高速加工,也适用于难加工材料的切割、钻孔等应用。 10. 娱乐 激光二极管还适用于现场表演、音乐会和投影映射等娱乐应用。利用激光的特性,可以打造出奇幻的演出效果。
找到!把低压配电柜讲得这么透彻的宝藏内容 电气知识课堂 2025年05月01日 16:38 广东 低压开关柜是电力系统中低压配电部分的重要设备,多安装于配电室内。以下是对低压开关柜基础知识的详细介绍: 一、定义与结构 低压开关柜是一个或多个低压开关设备和与之相关的控制、测量、信号、保护、调节等设备,由制造厂家负责完成所有内部的电气和机械的连接,用结构部件完整地组装在一起的一种组合体。它通常包括接线端子、各种刀闸、保护设备(如空气开关、熔断器)、测量设备(如电压表、电流表)和计量设备(如有功、无功功率表)等。 二、分类 低压开关柜按结构可分为固定式和抽出式(抽屉式)两大类: • 固定式:主电路的连接只能在开关柜断电的情况下进行接线和断开。 • 抽出式:主电路带电的情况下亦可安全地从主电路上断开或接通,具有连接、试验、分离、移出位置,便于维护和检修。 三、功能与作用 低压开关柜的主要功能与作用包括: 电能分配与转换:根据用电负荷的需求,将电能分配到各个用电设备,实现电能的合理分配和传输。 马达控制:对电机等设备进行启停控制,确保设备在稳定、安全的电力环境下运行。 保护人身和设备安全:防止触电(直接和间接接触),保护设备免受外界环境影响,如防尘、防水等。 故障控制:当线路出现故障时,有利于控制故障范围,方便快速找出故障点并加以排除。 便于检修:便于分片安排线路检修,而无需大面积的停电。 四、重要标准 低压开关柜的设计、制造和检验需遵循一系列重要标准,如: GB7251.1《低压成套开关设备和控制设备》 IEC60439.1《低压成套开关设备和控制设备》 GB/T 15576-2008《低压成套无功功率补偿装置》 这些标准规定了低压开关柜的性能要求、试验方法、检验规则等,确保产品的质量和安全。 五、使用场景 低压开关柜的使用场景非常广泛,涵盖了多个行业和领域,包括工业自动化控制、电力系统配电、机械加工、建筑电气、智能建筑、交通设施、电动汽车充电站以及冶金、矿山、石油、化工等工业领域。在商业和居民区中,低压开关柜也被广泛应用于商场、写字楼、住宅小区等场所的电力供应和控制。 六、维护与检修 为确保低压开关柜的安全稳定运行,需要定期进行维护和检修。维护内容包括检查各柜内是否有虫鼠活动的痕迹、检查警告牌和检修牌摆放位置是否正确、检查应急工具和灯具是否齐全正常等。检修时则需注意停电进行,并检查电气连接是否可靠、紧固螺栓有无松动、电器元件操作机构是否灵活等。 综上所述,低压开关柜作为电力系统中低压配电部分的重要设备,在电力分配、设备控制、安全保护等方面发挥着重要作用。了解其基础知识对于电力系统的安全稳定运行具有重要意义。
热泵空调的制冷与采暖 热泵空调是一种高效节能装置,既可制冷又可制热,制热时以逆循环方式迫使热量从低温物体流向高温物体,它仅消耗少量的逆循环功,而可以得到较大的供热量,从而达到节能的目的。 如图1所示,热泵空调系统主要包括电动压缩机、3个换热器(车外冷凝器、车内冷凝器及车内蒸发器)、2个电磁阀(制冷电磁阀及采暖电磁阀)、2个电子膨胀阀(制冷电子膨胀阀及采暖电子膨胀阀)以及制冷剂压力及温度传感器等。 图1 热泵空调制冷原理示意图 空调压缩机通过交流高压电驱动,一般为定排量、涡旋式类型,通过电机转速的变化向空调系统提供所需的制冷剂量; 电磁阀为开关型,通电时工作而接通管路; 电子膨胀阀是按照指令使步进电机转动而实现针阀轴向移动,通过改变阀口的流通面积来调节制冷剂的流量,使制冷剂流量与热负荷相匹配。 1.制冷原理 热泵空调制冷时,图1中制冷电磁阀及制冷电子膨胀阀工作。 从压缩机出来的高温高压制冷剂,经过制冷电磁阀后进入车外冷凝器,与室外空气进行热交换后变为高压中温液态,经过制冷电子膨胀阀节流后进入车内蒸发器,吸收车内热量后液态制冷剂变为低压低温气态回流至压缩机,完成制冷循环。 2.采暖原理 热泵空调采暖时,图2中采暖电子膨胀阀及采暖电磁阀工作。 从压缩机出来的高温高压制冷剂进入车内冷却器并放热,放热后制冷剂冷却成高压中温的液体,经过采暖电子膨胀阀节流后进入车外冷凝器,吸收车外环境的热量后液态制冷剂变为低压低温气态,再经过采暖电磁阀回流至压缩机,完成采暖循环。 图2 热泵空调采暖原理示意图 二 ✦ 海豚车热泵空调系统 2021年9月,比亚迪电动3.0平台海洋系列首款车型—海豚车上市,该车首次搭载了热泵空调系统,对整车热管理系统的效能有较大提升。 1.海豚车热泵空调系统组成 如图3所示,海豚车热泵空调系统主要由电动空调压缩机(最大功率6kW)、电子风扇、电机散热器、车外冷凝器、车内冷凝器与车内蒸发器、动力电池直冷直热板、气液分离器、热管理集成模块以及板式换热器(位于热管理集成模块下方)等组成,制冷剂为R1 34a(比亚迪部分纯电动车型采用R410a)。 图3 海豚车热泵空调系统组成 热管理集成模块上集成了6个电磁阀、3个电子膨胀阀(图4)以及9个制冷剂管接头(图5)。 图4 热管理集成模块 图5 热管理集成模块管路连接 2.海豚车热泵空调系统工作原理 海豚车热泵空调系统原理示意图,如图6所示。 图中PT-1、PT-2表示两个制冷剂压力及温度传感器,P-1,表示制冷剂压力传感器,T-1、T-2表示两个制冷剂温度传感器。 图6 海豚车热泵空调原理示意图 海豚车热泵空调系统取消了传统电动汽车的高压PTC加热器,替换为低压风加热PTC加热器(1kw),用于极低温环境温度下辅助采暖。 海豚车热泵空调除了可以实现车内制冷、车内采暖功能外,还全球首次实现了通过制冷剂对动力电池直接冷却、直接加热功能,以及对驱动电机、电机控制器等电驱单元热量利用等五大功能,并实现了整车智能综合热管理。 搭载热泵空调技术的海豚车冬季续航能力提升10%以上,车辆覆盖了-30~40℃宽域温度范围,最低每百干米能耗降至10.3kWh。 (1)空调采暖 当车辆低温行驶(或停止)时,打开空调系统采暖,热泵空调系统开启电动压缩机,采暖电子膨胀阀工作、水源换热电磁阀及空调采暖电磁阀均打开,制冷剂通过车内冷凝器放热,通过板式换热器吸收驱动电机、电机控制器等电驱动单元的热量。 极低温情况下,可以开启PTC加热器辅助加热,提高热泵空调的适用温度范围。 空调采暖时,制冷剂的流动路线为: 压缩机→车内冷凝器→采暖电子膨胀阀→水源换热电磁阀→板式换热器→空调采暖电磁阀→气液分离器→压缩机(图7)。 图7 空调采暖 (2)动力电池加热 当低温环境下充电,为缩短充电时间,或者是车辆低温行驶时,为改善低温下整车的动力性,热泵空调工作对动力电池直接进行加热。 此时,电池电子膨胀阀开启工作,电池加热电磁阀、水源换热电磁阀和空调采暖电磁阀均打开,制冷剂通过板式换热器吸收电驱动单元余热,加热动力电池直冷直热板。 电池加热时,制冷剂的流动路线为: 压缩机→电池加热电磁阀→动力电池直冷直热板→电池电子膨胀阀→单向阀1→水源换热电磁阀→板式换热器→空调采暖电磁阀→气液分离器→压缩机(图8)。 图8 动力电池加热 (3)空调采暖和动力电池同时加热 当车辆低温行驶或低温充电时,若需要同时给乘员舱采暖和动力电池加热,热泵空调系统开启电动压缩机,采暖电子膨胀阀和电池电子膨胀阀同时开启工作,水源换热电磁阀、电池加热电磁阀及空调采暖电磁阀均打开,吸收电驱动单元余热,车内冷凝器和动力电池直冷直热板放热,若有必要,可以开启PTC加热器辅助加热(制冷剂的流动方向参考图7、图8)。 (4)空调制冷 当车辆高温行驶(或停止)时,打开空调系统制冷,热泵空调系统开启电动压缩机,制冷电子阀膨胀阀工作,空调制冷电磁阀及空气换热电磁阀均打开,制冷剂通过车外冷凝器放热,车内 蒸发器 吸收车内热量。 空调制冷时,制冷剂的流动路线为: 压缩机。 车内冷凝器→空调制冷电磁阀→空气换热电磁阀→单向阀5→制冷电子膨胀阀→车内 蒸发器 →单向阀4→气液分离器→压缩机(图9)。 图9 空调制冷 (5)动力电池冷却 充电特别是大功率充电时,为了防止动力电池温度过高,热泵空调工作,对动力电池直接进行冷却; 车辆行驶时,当动力电池温度高于设定值,热泵空调也开始工作。 此时,电池电子膨胀阀开启工作,空调制冷电磁阀、空气换热电磁阀和电池冷却电磁阀均打开。 制冷剂通过车外换热器放热,通过动力电池直冷直热板吸热。 动力电池冷却时,制冷剂的流动路线为: 压缩机→车内冷凝器→空调制冷电磁阀→空气换热电磁阀→单向阀5→单向阀2→电池电子膨胀阀、动力电池直冷直热板→电池冷却电磁阀、单向阀3→气液分离器升压缩机(图10)。 图10 动力电池冷却 (6)空调制冷和动力电池同时冷却 车辆充电或者车辆行驶时,若同时需要车内制冷以及动力电池冷却,热泵空调工作,此时电池电子膨胀阀和制冷电子膨胀阀同时开启工作,空调制冷电磁阀、空气换热电磁阀和电池冷却电磁阀均打开(制冷剂的流动方向参考图9、图10)。
热泵空调的制冷与采暖 热泵空调是一种高效节能装置,既可制冷又可制热,制热时以逆循环方式迫使热量从低温物体流向高温物体,它仅消耗少量的逆循环功,而可以得到较大的供热量,从而达到节能的目的。 如图1所示,热泵空调系统主要包括电动压缩机、3个换热器(车外冷凝器、车内冷凝器及车内蒸发器)、2个电磁阀(制冷电磁阀及采暖电磁阀)、2个电子膨胀阀(制冷电子膨胀阀及采暖电子膨胀阀)以及制冷剂压力及温度传感器等。 图1 热泵空调制冷原理示意图 空调压缩机通过交流高压电驱动,一般为定排量、涡旋式类型,通过电机转速的变化向空调系统提供所需的制冷剂量; 电磁阀为开关型,通电时工作而接通管路; 电子膨胀阀是按照指令使步进电机转动而实现针阀轴向移动,通过改变阀口的流通面积来调节制冷剂的流量,使制冷剂流量与热负荷相匹配。 1.制冷原理 热泵空调制冷时,图1中制冷电磁阀及制冷电子膨胀阀工作。 从压缩机出来的高温高压制冷剂,经过制冷电磁阀后进入车外冷凝器,与室外空气进行热交换后变为高压中温液态,经过制冷电子膨胀阀节流后进入车内蒸发器,吸收车内热量后液态制冷剂变为低压低温气态回流至压缩机,完成制冷循环。 2.采暖原理 热泵空调采暖时,图2中采暖电子膨胀阀及采暖电磁阀工作。 从压缩机出来的高温高压制冷剂进入车内冷却器并放热,放热后制冷剂冷却成高压中温的液体,经过采暖电子膨胀阀节流后进入车外冷凝器,吸收车外环境的热量后液态制冷剂变为低压低温气态,再经过采暖电磁阀回流至压缩机,完成采暖循环。 图2 热泵空调采暖原理示意图 二 ✦ 海豚车热泵空调系统 2021年9月,比亚迪电动3.0平台海洋系列首款车型—海豚车上市,该车首次搭载了热泵空调系统,对整车热管理系统的效能有较大提升。 1.海豚车热泵空调系统组成 如图3所示,海豚车热泵空调系统主要由电动空调压缩机(最大功率6kW)、电子风扇、电机散热器、车外冷凝器、车内冷凝器与车内蒸发器、动力电池直冷直热板、气液分离器、热管理集成模块以及板式换热器(位于热管理集成模块下方)等组成,制冷剂为R1 34a(比亚迪部分纯电动车型采用R410a)。 图3 海豚车热泵空调系统组成 热管理集成模块上集成了6个电磁阀、3个电子膨胀阀(图4)以及9个制冷剂管接头(图5)。 图4 热管理集成模块 图5 热管理集成模块管路连接 2.海豚车热泵空调系统工作原理 海豚车热泵空调系统原理示意图,如图6所示。 图中PT-1、PT-2表示两个制冷剂压力及温度传感器,P-1,表示制冷剂压力传感器,T-1、T-2表示两个制冷剂温度传感器。 图6 海豚车热泵空调原理示意图 海豚车热泵空调系统取消了传统电动汽车的高压PTC加热器,替换为低压风加热PTC加热器(1kw),用于极低温环境温度下辅助采暖。 海豚车热泵空调除了可以实现车内制冷、车内采暖功能外,还全球首次实现了通过制冷剂对动力电池直接冷却、直接加热功能,以及对驱动电机、电机控制器等电驱单元热量利用等五大功能,并实现了整车智能综合热管理。 搭载热泵空调技术的海豚车冬季续航能力提升10%以上,车辆覆盖了-30~40℃宽域温度范围,最低每百干米能耗降至10.3kWh。 (1)空调采暖 当车辆低温行驶(或停止)时,打开空调系统采暖,热泵空调系统开启电动压缩机,采暖电子膨胀阀工作、水源换热电磁阀及空调采暖电磁阀均打开,制冷剂通过车内冷凝器放热,通过板式换热器吸收驱动电机、电机控制器等电驱动单元的热量。 极低温情况下,可以开启PTC加热器辅助加热,提高热泵空调的适用温度范围。 空调采暖时,制冷剂的流动路线为: 压缩机→车内冷凝器→采暖电子膨胀阀→水源换热电磁阀→板式换热器→空调采暖电磁阀→气液分离器→压缩机(图7)。 图7 空调采暖 (2)动力电池加热 当低温环境下充电,为缩短充电时间,或者是车辆低温行驶时,为改善低温下整车的动力性,热泵空调工作对动力电池直接进行加热。 此时,电池电子膨胀阀开启工作,电池加热电磁阀、水源换热电磁阀和空调采暖电磁阀均打开,制冷剂通过板式换热器吸收电驱动单元余热,加热动力电池直冷直热板。 电池加热时,制冷剂的流动路线为: 压缩机→电池加热电磁阀→动力电池直冷直热板→电池电子膨胀阀→单向阀1→水源换热电磁阀→板式换热器→空调采暖电磁阀→气液分离器→压缩机(图8)。 图8 动力电池加热 (3)空调采暖和动力电池同时加热 当车辆低温行驶或低温充电时,若需要同时给乘员舱采暖和动力电池加热,热泵空调系统开启电动压缩机,采暖电子膨胀阀和电池电子膨胀阀同时开启工作,水源换热电磁阀、电池加热电磁阀及空调采暖电磁阀均打开,吸收电驱动单元余热,车内冷凝器和动力电池直冷直热板放热,若有必要,可以开启PTC加热器辅助加热(制冷剂的流动方向参考图7、图8)。 (4)空调制冷 当车辆高温行驶(或停止)时,打开空调系统制冷,热泵空调系统开启电动压缩机,制冷电子阀膨胀阀工作,空调制冷电磁阀及空气换热电磁阀均打开,制冷剂通过车外冷凝器放热,车内 蒸发器 吸收车内热量。 空调制冷时,制冷剂的流动路线为: 压缩机。 车内冷凝器→空调制冷电磁阀→空气换热电磁阀→单向阀5→制冷电子膨胀阀→车内 蒸发器 →单向阀4→气液分离器→压缩机(图9)。 图9 空调制冷 (5)动力电池冷却 充电特别是大功率充电时,为了防止动力电池温度过高,热泵空调工作,对动力电池直接进行冷却; 车辆行驶时,当动力电池温度高于设定值,热泵空调也开始工作。 此时,电池电子膨胀阀开启工作,空调制冷电磁阀、空气换热电磁阀和电池冷却电磁阀均打开。 制冷剂通过车外换热器放热,通过动力电池直冷直热板吸热。 动力电池冷却时,制冷剂的流动路线为: 压缩机→车内冷凝器→空调制冷电磁阀→空气换热电磁阀→单向阀5→单向阀2→电池电子膨胀阀、动力电池直冷直热板→电池冷却电磁阀、单向阀3→气液分离器升压缩机(图10)。 图10 动力电池冷却 (6)空调制冷和动力电池同时冷却 车辆充电或者车辆行驶时,若同时需要车内制冷以及动力电池冷却,热泵空调工作,此时电池电子膨胀阀和制冷电子膨胀阀同时开启工作,空调制冷电磁阀、空气换热电磁阀和电池冷却电磁阀均打开(制冷剂的流动方向参考图9、图10)。