• 阻焊层开窗的技巧与设计方法

    阻焊层是覆盖铜线和 PCB 材料的 PCB 油层,用于绝缘和保护 PCB 外部免受短路和环境的影响。

    09-24 303浏览
  • 案例解析11种防雷器电路原理

    目录 一、交流电源防雷器(一)单相并联式防雷器(三)单相串联式防雷器(四)三相串联式防雷器二、通信机房用直流电源防雷器(一)并联式直流电源防雷器(二)串联式直流电源防雷器三、通用两级信号防雷器(一)双绞线型(二)同轴线型四、小功率电源变压器或开关电源保护电路(以两组输出为例)五、通讯电子设备的保护电路六、直流电源与信号同传1、110V 不接地电源与信号同传:2、+24V 负极接地电源与信号同传:七、信号电路的二级双重保护方式八、检测/控制电路的保护九、单级信号防雷器1、只用玻璃放电管的保护电路2、只用半导体过压保护器的保护电路3、只用 TVS 管的保护电路十、天馈防雷器1、单级电路天馈防雷器2、二级电路天馈防雷器3、三级电路天馈防雷器十一、防静电保护器 一、交流电源防雷器 (一)单相并联式防雷器 电路一:最简单的电路 说明: 1、优点:电路简单,采用复合对称电路,共模、差模全保护, L、N 可以随便接。 缺点:压敏电阻RV1 短路失效后易引起火灾。最好在每个压敏电阻上串联一个工频保险丝以防压敏电阻短路起火。如果L、N 线不可能接反,则可省去压敏电阻RV2、RV3,将放电管G 的上端直接接到N 线上,构成“1+1”电路。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,以延长使用寿命和确保安全)。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 电路二:较安全的电路 说明: 1、优点:采用复合对称电路,共模、差模全保护, L、N 可以随便接,正常工作时无漏电流,可延长器件使用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引起火灾。缺点:万一压敏电阻和陶瓷气体放电管都短路失效时还有可能起火。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,以延长使用寿命和确保安全)。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 电路三:通用的安全保护电路 说明: 1、优点:采用复合对称电路,共模、差模全保护,L、N 可以随便接,安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 3、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。 4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 5、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 (二)三相并联式防雷器 电路一:最简单的电路 说明: 1、优点:采用“3+1”电路,电路简单,三相全保护。缺点:压敏电阻短路失效后易引起火灾。最好在每个压敏电阻上串联一个工频保险丝以防压敏电阻短路起火。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长使用寿命和确保安全)。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 电路二:较安全的电路 说明: 1、优点:采用“3+1”电路,三相全保护,正常工作时无漏电流,可延长器件使用寿命,由于陶瓷气体放电管失效模式大多为开路,不易引起火灾。缺点:万一压敏电阻和陶瓷气体放电管都短路失效时还有可能引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,以延长使用寿命和确保安全)。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 电路三:通用的安全保护电路 说明: 1、优点:采用“3+1”电路,三相全保护,安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示为每相两个压敏电阻并联,应挑选压敏电压值相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 3、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个工频保险丝以防工频过电压瞬间穿压敏电阻起火。 4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 5、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 (三)单相串联式防雷器 单相通用安全保护电路: 说明: 1、优点:采用两级复合对称电路,共模、差模全保护,残压低,L、N 可以随便接,安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示第一级为m 个压敏电阻并联,第二级为n 个并联,应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 3、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。 4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 5、压敏电阻和放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。 6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 (四)三相串联式防雷器 三相通用安全保护电路: 说明: 1、优点:采用两级“3+1”电路,三相全保护,残压低,安全,压敏电阻短路失效后能与电路脱离,一般不会引起火灾。 2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(如图所示第一级为m 个压敏电阻并联,第二级为n 个并联,应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 3、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个工频保险丝以防工频过电压瞬间击穿压敏电阻起火。 4、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压为470V~600V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 5、压敏电阻和放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。 6、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 二、通信机房用直流电源防雷器 (一)并联式直流电源防雷器 1、正极接地(-48V)直流电源 说明: 1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 2、负极接地(+24V)直流电源 说明: 1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为90V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 3、正负对称直流电源 说明: 1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全)。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择,直流击穿电压一般为150V。当要求的通流容量≤3KA 时,可以用玻璃放电管代替。 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右) (二)串联式直流电源防雷器 1、正极接地(-48V)直流电源 说明: 1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量Im 大时,第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级Im1≥Im,第二级Im2≥(0.2~0.3)Im 估算。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、第一个陶瓷气体放电管G1 的通流容量根据要求的通流容量Im 选择,第二个放电管G2 可以参照第二级Im2 选择。 4、压敏电阻和放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。 5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 2、负极接地(+24V)直流电源 说明: 1、压敏电阻在图上所标型号中选取(压敏电压高的更安全、耐用,故障率低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量Im 大时,第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级Im1≥Im,第二级Im2≥(0.2~0.3)Im 估算。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、第一个陶瓷气体放电管G1 的通流容量根据要求的通流容量Im 选择,第二个放电管G2 可以参照第二级Im2 选择。 4、压敏电阻和放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,放电管为最大通流容量的一半左右)。 5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 3、正负对称直流电源 说明: 1、压敏电阻在图上所标型号中选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高),根据通流容量要求选择外形尺寸和封装形式,要求通流容量Im 大时,第一、二级可以如图所示分别用m个、n个压敏电阻并联(应挑选压敏电压相近的并联,每个压敏电阻都要单独串联温度保险管,以延长使用寿命和确保安全),按第一级Im1≥Im,第二级Im2≥(0.2~0.3)Im 估算。 2、温度保险管一般采用130℃~135℃、10A/250V 的,应与压敏电阻有良好的热耦合。最好再串联一个电流保险丝以防操作过电压瞬间击穿压敏电阻起火。 3、陶瓷气体放电管的通流容量根据要求的通流容量选择 4、压敏电阻和气体放电管都必须按冲击10 次以上的降额值计算通流容量(压敏电阻为一次冲击通流容量的三分之一左右,气体放电管为最大通流容量的一半左右)。 5、串联电感为空心电感,电感量应≥20μH,导线直径应按负载电流计算。 三、通用两级信号防雷器 (一)双绞线型 通用电路一: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: 通用电路二: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②玻璃放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③本电路只适用于冲击电流不大于玻璃放电管最大脉冲放电电流的场合,且电路中没有连续直流电压。 通用电路三: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下表: ③本电路只适用于电路中没有连续直流电压的场合。 通用电路四: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选择,见下表: ③使用电压低的半导体过电压保护器时,必须如图所示在接地端串联玻璃放电管;当使用电压高于100V 的半导体过电压保护器时可以不串联玻璃放电管。 ④本电路只适用于电路中没有连续直流电压的场合。 通用电路五: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③本电路适用于传输高频/高速信号(最高频率可达20MHZ)。 (二)同轴线型 (1)外导体接地电路: 通用电路一: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路带宽很宽,可以传输 20MHZ 以下的高频信号。 ④输入、输出接头应分别与原系统的接头类型相配。 通用电路二: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下表: ③本电路只适用于电路中没有连续直流电压的场合。 ④输入、输出接头应分别与原系统的接头类型相配。 通用电路三: 说明: ①本电路只适用于信号频率/速率较低,且电路中没有连续直流电压的场合。 ②R 可以用普通金属氧化膜电阻(2W-4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(自恢复保险丝:LP60-010/030,LB180(U))。 ③玻璃放电管和半导体过电压保护器的直流击穿电压根据信号电压幅度选择,见下表: ④输入、输出接头应分别与原系统的接头类型相配。 (2)外导体不接地电路: 通用电路一: 说明: ①电路带宽很宽,可以传输 20MHZ 以下的高频信号。 ②陶瓷气体放电管和 TVS1 的直流击穿电压根据信号电压幅度选择,见下表: ③R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ④输入、输出接头应分别与原系统的接头类型相配。 通用电路二: 说明: ①R1、R2 可以用普通金属氧化膜电阻(2W-4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②玻璃放电管和半导体过压保护器的直流击穿电压根据信号电压幅度选择,见下表: ③本电路只适用于信号频率/速率较低的场合。 ④输入、输出接头应分别与原系统的接头类型相配。 (三)提高传输频率/速率的方法 1、采用低电容TVS 管或半导体过压保护器 传输频率/速率≥10MHz,Cj≤60pF; 传输频率/速率≥100MHz,Cj≤20pF。 2、将TVS 管或半导体过压保护器串入高速整流桥中(如下图所示): 四、小功率电源变压器或开关电源保护电路(以两组输出为例) 电路一: 说明: ①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻RV1 的通流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源防雷器” ),压敏电压应在470~620V 之间选取(电压很不稳定的地方应选更高的)。关注@电路一点通 ② RV2、RV3 根据U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选择,不带长引线时用5D 或7D,用长引线输出时,应选用通流容量更大的压敏电阻(引线越长,通流容量要越大)。 ③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小选择。 电路二: 说明: ①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻RV1 的通流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源防雷器” ),压敏电压应在470~620V 之间选取(电压很不稳定的地方应选更高的)。 ② TVS1、TVS2 一般用1.5KE 系列的(浪涌电流很小的地方也可用P6KE 系列的),根据U1、U2 的最大峰值电压选择击穿电压值(VBRmin≥1.2Up)。 ③陶瓷气体放电管一般用直流击穿电压 470V 的,通流容量根据输入浪涌电流大小选择。 ④本电路只适用于输出端不带长引线、浪涌电流较小的地方使用(例如在同一块电路板或相邻电路板上)。 电路三: 说明: ①自恢复保险丝 PTC 根据输入电流和最高工作环境温度选择,压敏电阻RV1 的通流容量根据输入浪涌电流大小选择(一个不够时,可用几个并联,参照“一、交流电源防雷器” ),压敏电压应在470~620V 之间选取(电压很不稳定的地方应选更高的)。 ② RV2、RV3 根据U1、U2 的数值选择压敏电压值,外形大小根据输出线长度选择,不带长引线时用5D 或7D,用长引线输出时,应选用通流容量更大的压敏电阻(引线越长,通流容量要越大)。输出电流较大时,要在线上串联自恢复保险丝PTC2、PTC3(根据输出电流和最高环境温度选择)。 ③陶瓷气体放电管一般用直流击穿电压470V 的,通流容量根据输入浪涌电流大小选择。 五、通讯电子设备的保护电路 电路一: 说明: ①本电路适用于架空线引入或其它浪涌电流较大的场合。 ②陶瓷气体放电管的最大放电电流一般选 10kA 或5kA,直流击穿电压根据信号电压幅度选择,见下表:关注@电路一点通 ③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,则可用P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(4.3~5.6Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 电路二: 说明: ①在埋地电缆引入或其它浪涌电流较小的场合使用。 ②BLSA1、BLSA2 用YA-301 型或 YS-301 型玻璃放电管。 ③TVS 管用 P6KE220CA 型。如果传输线上没有振铃信号,TVS 管可用P6KE68CA 型。 ④R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 电路三: 说明: ①在埋地电缆引入或其它浪涌电流较小的场合使用。 ②R1、R2 可以用普通金属氧化膜电阻(3.6~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ③使用电压低(≤100V)的半导体过压保护器时,必须如图所示在接地端串联玻璃放电管(BLSA3);当使用电压高于100V 的半导体过压保护器时可以不串联玻璃放电管。 六、直流电源与信号同传 1、110V 不接地电源与信号同传: 电路一 电路二 2、+24V 负极接地电源与信号同传: 电路一 电路二 七、信号电路的二级双重保护方式 说明: 图中所标元件型号适用于信号幅度≤6V,整流桥中所接的P0080 可以用P6KE7.5A型TVS 管代替(负端朝左)。其它信号幅度时,要更换元件型号。 八、检测/控制电路的保护 例如:水、电、煤气抄表系统,门禁、对讲、报警系统,这类系统一般采用低频(脉冲)信号或直流(交流)开关信号。这类系统又分为不接地系统和接地系统两大类。 (1)不接地系统保护电路: 说明: ①R1、R2 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。 (2)接地系统保护电路: 说明: ①R 可以用普通金属氧化膜电阻(4.3~5.1Ω),也可以用冷态电阻相当的正温度系数热敏电阻(如:自恢复保险丝:LP60-010/030,LB180(U))。 ②陶瓷气体放电管和 TVS 管的直流击穿电压根据信号电压幅度选择,见下表: ③电路中没有连续直流电压时,TVS 管可以用击穿电压相当的半导体过压保护器代替。当浪涌电流较小时,陶瓷气体放电管可以用击穿电压相当的玻璃放电管代替。 九、单级信号防雷器 1、只用玻璃放电管的保护电路 说明: ①可用于信号频率/传输速率很高,但没有连续直流电压的场合。 ②玻璃放电管的直流击穿电压应根据信号电压峰值,按下式选择: VBRmin≥1.2USpeak ③既可以对不接地的双线传输线进行保护,也可以在有公共接地线的传输系统中(如图中虚线所示)对需要保护的线进行独立保护。 2、只用半导体过压保护器的保护电路 说明: ①可用于信号频率/传输速率较低,且没有连续直流电压的场合。 ②半导体过压保护器的击穿电压应根据信号峰值电压,按下式选择: VBR≥1.2USpeak ③当所用半导体过压保护器的击穿电压低于 100V 时,应在接地端串联一个击穿电压大于100V 的二端半导体过压保护器或玻璃放电管再接地,如下图所示。 ④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护”的电路,可以对1 线、2 线、⋯⋯分别进行保护。 3、只用 TVS 管的保护电路 说明: ①可用于信号频率/传输速率较低、线路中可能有连续直流电压、浪涌电流较小的场合。 ②TVS 管的直流击穿电压应根据信号电压峰值,按下式选择: VBRmin≥1.2USpeak ③当接地线较长、信号易受干扰时,可在TVS1、TVS2(左图)或TVS2、TVS3(右图)之间加接击穿电压大于100V 的TVS 管或玻璃放电管再接地,如下图所示。 ④当传输线中有公共接地线(如图中虚线所示)时,采用“(1)不带差模保护”的电路,可以对1 线、2 线、⋯⋯分别进行保护。 ## 4、复合保护电路 说明: ①可用于信号频率/传输速率较高(≤10MHZ)的场合。整流桥若用快速恢复二极管构成,传输信号频率/速率可达20MHz 以上。 ②当线路中有连续直流电压时,必须采用电路二。 ③图中所标元件型号适用于信号幅度≤6V。信号幅度更大时,要更换整流桥中所接元件型号(参照“两级信号保护电路”关于TVS 管和半导体过压保护器选择的说明)。 ④当接地线较长、信号易受干扰时,TVS1、TVS2 应选用击穿电压≥100V、且峰值脉冲功率更大的TVS 管,或采用电路三。 十、天馈防雷器 1、单级电路天馈防雷器 说明: ①可以同时传送电源,保护效果较差,适用于天线不带放大器或虽然带放大器但耐冲击能力较强的场合。 ②同轴腔体和两端的接头是根据系统所用接头类型、传输信号频率范围专门设计加工的。 ③陶瓷气体放电管一般选用通流容量 20kA 的,直流击穿电压主要根据所传输的信号功率大小选取,一般50W 以下用90V 的,传输功率越大,应选用直流击穿电压越高的放电管。 ④将放电管装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损耗应满足要求。 ⑤在户外使用时,腔体、接头、放电管安装孔都必须设计成防水的。 2、二级电路天馈防雷器 说明: ①保护效果好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器的场合。 ②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加工的。 ③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压90V 的。 ④TVS 管一般用1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选取(VBRmin≥1.2UDC 或VBRmin≥1.2Up)。 ⑤ C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L3 是用漆包紫铜线绕成的空心电感,L2 可用100μH 左右的铁心电感。 ⑥将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损耗应满足要求。 ⑦在户外使用时,腔体、接头和盖板都必须设计成防水的。 3、三级电路天馈防雷器 说明: ①保护效果很好,残压低,可以同时传送电源,适用于天线带放大器或不带放大器的场合。 ②腔体和输入、输出接头是根据系统所用接头类型、传输信号频率范围专门设计加工的。 ③陶瓷气体放电管一般选用通流容量 20kA、直流击穿电压90V 的。关注@电路一点通 ④压敏电阻 RV 一般选用20D100K 型的。 ⑤TVS 管一般用1.5KE 系列的,击穿电压根据所传输的直流电压或交流电压峰值选取(VBRmin≥1.2UDC 或VBRmin≥1.2Up)。 ⑥C 是由紫铜片构成的平板电容器,平板间加聚四氟乙烯薄膜;L1、L4 是用漆包紫铜线绕成的空心电感,L2、L3 可用100μH 左右的铁心电感。 ⑦将元件装入腔体后,用微波网络分析仪测试信号频率范围内的驻波系数、插入损耗应满足要求。 ⑧在户外使用时,腔体、接头和盖板都必须设计成防水的。 十一、防静电保护器 说明: ① “电路一”响应时间最短,通流量较小,适用于不能接地的设备、部件或电路; ② “电路二”响应时间较短,通流量可大可小,适用于不能接地的设备、部件或电路; ③ “电路三”响应时间很短,通流量较大,适用于可以接地的设备、部件或电路; ④ “电路四”响应时间较短,通流量较小,适用于可以接地的设备、部件或电路; ⑤ 所用器件的击穿电压(压敏电压)应低于被保护设备、部件或电路所能承受的最高电压,但要高于电路最高工作电压,通流量根据可能感应的最大静电荷量折算成的电流值选取。

    09-13 253浏览
  • 3G路由器与无线路由器的区别是什么?

    无线路由器是用于用户上网、带有无线覆盖功能的路由器。无线路由器可以看作是一个转发器,将家中墙上接出的宽带网络信号通过天线转发给附近的无线网络设备(笔记本电脑、支持wifi的手机、平板以及所有带有WIFI功能的...

    09-12 79浏览
  • 如何参与LTE-Advanced技术的国际标准制定

    2004年底,在3GPP中开始进行LTE的标准化工作,与3G以CDMA技术为基础不同,根据无线通信向宽带化方向发展的趋势,LTE采用了OFDM技术为基础,结合多天线和快速分组调度等设计理念,形成了新的面向下一代移动通信系统...

    09-12 81浏览
  • 如何优化GPS芯片的性能以提升定位精度

    芯片是非常重要的电子器件,可以说,现代的高端电子设备都是建立在芯片的基础上的。上篇文章中,小编对语音芯片的相关内容有所阐述。为增进大家对芯片的认识,本文将对GPS芯片予以介绍。如果芯片是你想要了解的知识...

    09-04 126浏览
  • GSM系统的主要技术特点是什么?

    全球移动通信系统(GSM)是迄今为止最为成功的全球性移动通信系统。其开发始于1982年。欧洲电信标准协会(ETSI)的前身欧洲邮政电信管理会议(CEPT)成立了移动特别行动小组(Groupe Speciale Mobile),该小组得到了对有关...

    08-22 98浏览
  • 移动通信功率控制技术的作用是什么?

    功率控制技术是移动通信信息技术当中的关键之一,这种技术主要采用CDMA系统核心技术,通过自干扰系统,克服了由于移动通信网络当中,信号台发射信号远近的问题,造成的“远近效应”,从而提高移动通信的质量,通过开...

    08-22 97浏览
  • 智能天线的工作原理与信号处理机制

    在移动通信环境条件下,复杂的地形、建筑物的结构都会对电波的传播产生影响,大量用户间的相互作用也会产生时延扩散、瑞利衰落、多径、信道干扰等,从而会使通信质量受到影响。采用智能天线可以有效地解决这些问题...

    08-22 121浏览
  • 智能算法在信号处理中的作用是什么?

    智能天线的作用体现在下列方面:(1)提高频谱利用率。采用智能天线技术代替普通天线,提高小区内频谱复用率,可以在不新建或尽量少建基站的基础上增加系统容量,降低运营成本。 (2)迅速解决稠密市区容量瓶颈。未来...

    08-22 85浏览
  • 如何选择合适的智能算法进行波束控制

    智能天线技术前身是一种波束成形(Beamforming)技术。波束成形技术是发送方在获取一定的当前时刻当前位置发送方和接收方之间的信道信息,调整信号发送的参数,使得射频能量向接收方所处位置集中,从而使得接收方接收...

    08-22 81浏览
正在努力加载更多...
广告