• 机房的防雷接地系统设计

    本期我们来通过一个实例,详细了解机房如何做防雷接地? 一、为什么要做防雷接地? 计算机和网络越来越深入人们生活和工作中,同时也预示着数字化、信息化时代的来临。这些微电子网络设备的普遍应用,使得防雷的问题显得越来越重要。由于微电子设备具有高密度、高速度、低电压、和低功耗等特性,这就使其对各种诸如雷电过电压、电力系统操作过电压、静电放电、电磁辐射等电磁干扰非常敏感。如果防护措施不力,随时随地可能遭受重大损失。 二、机房防雷的必要性 雷击可以产生不同的破坏形式,国际电工委员会已将雷电灾害称为“电子时代的一大公害”,雷击、感应雷击、电源尖波等瞬间过电压已成为破坏电子设备的罪魁祸首。从大量的通信设备雷击事例中分析,专家们认为:由雷电感应和雷电波侵入造成的雷电电磁脉冲(LEMP)是机房设备损坏的主要原因。为此采取的防范原则是“整体防御、综合治理、多重保护”。力争将其产生的危害降低到最低点。 三、机房防雷接地系统设计 一、防雷设计 防雷接地系统是弱电精密设备及机房保护的重要子系统,主要保障设备的高可靠性,防止雷电的危害。中心机房是一个设备价值非常高的场所,一旦发生雷击事故,将会造成难以估量的经济损失和社会影响,根据GB50057《建筑物防雷设计规范》和IEC61024-1-1标准的有关规定,中心机房的防雷等级应定为二类标准设计。 目前大楼总配电室根据建筑物防雷设计规范,提供了第一级防雷,因此,在本工程网络中心机房市电配电柜前配置第二、三级复合防雷器。 防雷器采用独立模块,并应具有失效告警指示,当某个模块被雷击失效时可单独更换该模块,而不需要更换整个防雷器。 二三级复合防雷器的主要参数指标:单相通流量为:≥40KA(8/20μs),响应时间:≤25ns 二、接地系统设计 国家标准GB50174《计算机机房设计规范》中计算机机房应具有以下四种地:计算机系统的直流地、交流工作地、交流保护地和防雷保护地。 各接地系统电阻如下: Ø计算机系统设备直流地接地电阻不大于1Ω。 Ø交流保护地的接地电阻应不大于4Ω; Ø防雷保护地的接地电阻应不大于10Ω; Ø交流工作地的接地电阻应不大于4Ω; 1、机房室内等电位连接 在机房内设立一环形接地汇流排,机房内的设备及机壳采用S型的等电位连接形式,连接到接地汇流排上,用50*0.5铜铂带敷设在活动地板支架下,纵横组成1200*1200网格状,在机房一周敷设30*3(40*4)的铜带,铜带配有专用接地端子,用编织软铜线机房内所有金属材质的材料都做接地,接入大楼的保护地上。 工程中的所有接地线(包括设备、SPD、线槽等)、金属线槽搭接跨接线均应做到短、平、直,接地电阻要求小于或等于1欧姆。 2、机房屏蔽设计 整个机房屏蔽采用彩钢板进行六面体屏蔽,屏蔽板之前采用无缝焊接,墙身屏蔽体每边跟接地汇流排接地不少于2处。 3、机房接地装置设计 由于机房接地电阻要求较高,在该大楼附近另外增加人工接地装置,在地网槽内打入15根镀锌角钢,并用扁钢焊接起来,并采用降阻剂回填。机房静电接地采用50mm²多股铜芯线穿管引入。 接地装置的接地电阻要求小于或等于1欧姆。 四、机房地网制作方法 一、标准接地网的制作 在距建筑物1.5~3.0m处,以6m*3m矩形框线为中心,开挖宽度为0.8m、深0.6~0.8m的土沟,两长边中间贯通,采用长2.5m的L5(5*50*50)镀锌角钢,在沟底的每个交点处垂直打入一根,共计6-20根,作为垂直接地极; 然后采用4号(4*40)镀锌扁钢将六根角钢焊接连通,作为水平接地极;再用4号镀锌扁钢焊在地网框架的中间部位,引出至机房外墙角,离地高0.3m,作为PE接地端;最后从该接地端引出16-50平方毫米以上护套地线,沿墙边穿墙进入室内,连至机房内等电位接地汇集排。 二、利用大楼钢筋做地网 新建或翻建机房时,可利用入地混凝土立柱子内的钢筋作接地装置。在立柱内选取至少4根主筋(对角或对称的钢筋),用氧焊接通后再焊在两根伸出柱面的M12以上铜螺纹管上,作为接地端,引线至机房,与等电位接地汇流排连通,等电位接地排可设在防静电地板下面。 五、如何做机房防雷接地? 所谓接地,即把电路中的某一金属壳与大地边接在一起,形成电气回路。目的是为了让电流易于流如入大地,对人及设备形成保护。 接地的方法: 直流地悬浮法即直流地不接大地,与地严格绝缘; 直流地接地法,把计算机等设备中数字电路等的电位点地和网络。 无论采用何种形式,均须有接地母线,接地地杖,在此特别强调建议采用接地埋接地网络板,能更好的引导至大地,接地时应注意如下问题: Ø尽量不要在机房内把直流地和交流工作地短路或混接; Ø不允许交流线路与直流地线平行敷设,以防止干扰或短接; Ø直流地线网应装接在地板下,便于边接,即可减小接地电阻,便于泄流。 1、接地铜排 室内机房接地采用30*5(宽*厚,单位mm)规格之铜片,围绕机房墙壁一周离地面10cm高,且与室外接地体母线相连接。在铜片每隔50 cm钻一小孔,以利于分布在机房各区域的设备进行接地。 2、接地铜板 接地铜板采用宽60mm(厚10mm)之L型铜板固定于楼板,此铜墙铁壁板作为所有应与机房接地之设施的总接地。 3、地网 机房有架设高架地板,则应以2.5mm之多芯裸铜线缠绵高架地板柱做地网。 六、机房防雷接地工程实例 一、项目情况 某数据中心机房位于大楼三层,面积约1000m²。 本工程配电采用TN-S系统,独立设置接地线(PE)。采用大楼联合接地系统,并且要求接地小于1欧姆。 机房内设有功能性接地和保护性接地,共用一组接地装置。 1、保护接地,防雷保护接地延引大楼的接地。 2、机房内做M网型结构均压等电位网格。机房室内等电位做法在机房地板下沿机柜一周敷设等电位铜带30×3mm²(均压环),铜带用ZR-BVR6mm2与各机房动力配电柜PE排相连,并设置100*0.3mm²铜箔等电位网格。机房动力设备的地线、动力设备的外壳、不带电的金属管道、金属线槽外壳、计算机设备外壳、防静电地板支架、吊顶龙骨、等均须用ZR-BVR6mm2与等电位铜排网络就近可靠相连。机房内设置等电位端子箱,机房内等电位端子箱采用ZR-BVR50mm²的电缆与大楼综合接地端可靠连接。机房等电位接地示意图如图1-1所示。 二、防雷设计思路 一个完整的防雷方案包括防直接部分和防感应雷击两部分,中心机房所在的建筑物已具备防直接雷击防护措施,因此本方案只对机房电子设备的配电系统采取相应的防感应雷击措施。 工程计算机交流配电系统采用三级防雷: 第一级在大楼低压配电室内加装防雷器,实现第一级防雷(由大楼实现)。 第二级在UPS输入配电柜内加装B级防雷器,实现第二级防雷。 第三级在机房UPS输出列头配电柜内加装C级防雷器,实现第三级防雷。 机房防雷设计示意图如图2-1所示: 三、防雷设计思路 由于网络集成系统防护点多、面广,因此,为了保护建筑物和建筑物内各向电子网络设备不受雷电损害或使雷击损害降低到最低程度,应从整体防雷的角度来进行防雷方案的设计。现在都采取综合防雷,综合防雷设计方案应包括两个方面:直击雷的防护和感应雷的防护,缺少任何一方面都是不完整的,有缺陷的和有潜在危险的。 1、直击雷的防护 如果无直击雷防护,按IEC1312的估算几乎所有雷电流都流经进出建筑物的导体型线路(如电源线、信号线等)侵入设备,这样的损害就非常之严重,因此做好直接雷击防护是做感应雷击防护的前提;直击雷防护按照国标GB50057《建筑物防雷设计规范》设计和施工,主要使用避雷针、网、线、带及良好的接地系统,其目的是保护建筑外部不受雷击的破坏,给建筑物内的人或设备提供一个相对安全的环境。 2、电源系统的防护 统计数据资料表明,微电子网络系统80%以上的雷害事故都是因为与系统相连的电源线路上感应的雷电冲击过电压造成的。因此,做好电源线的防护是整体防雷中不容忽视的一环。 3、信号系统的防护 尽管在电源和通信线路等外接引入线路上安装了防雷保护装置,由于雷击发生在网络线(如双绞线)感应到过电压,仍然会影响网络的正常运行,甚至彻底破坏网络系统。雷击时产生巨大的瞬变磁场,在1公里范围内的金属线路,如网络金属连线等都会感应到极强的感应雷击; 另外,当电源线或通信线路传输过来雷击电压时,或建筑物的地线系统在泻放雷击时,所产生强大的瞬变电流,对于网络传输线路来说,所感应的过电压已经足以一次性破坏网络。即使不是特别高的过电压,不能够一次性破坏设备,但是每一次的过电压冲击都加速了网络设备的老化,影响数据的传输和存储,甚至死机,直至彻底损坏。所以网络信号线的防雷对于网络集成系统的整体防雷来说,是非常重要的环节。 4、等电位连接 集成网络系统主干交换机所在的中心机房应设置均压环,将机房内所有金属物体,包括电缆屏蔽层、金属管道、金属门窗、设备外壳以及所有进出大楼的金属管道等金属构件进行电气连接,并接至均压环上,以均衡电位。 5、接地 机房采用联合接地可有效的解决地电位升高的影响,合格的地网是有效防雷的关键。机房的联合地网通常由机房建筑物基础(含地桩)、环形接地(体)装置、工作(电力变压器)地网等组成。对于敏感的数据通讯设备的防雷,接地系统的良好与否,直接关系到防雷的效果和质量。如果地网不合要求,应改善地网条件,适当扩大地网面积和改善地网结构,使雷电流尽快地泄放,缩短雷电流引起的高过电压的保持时间,以达到防雷要求。 四、电源防雷 电源系统防雷采用三级防雷的方式。对机房配电箱的防雷应采取不少于二级保护(细保护),既在机房的主配电箱的输入一套安装二级防雷器,在机房配电箱输出端每一路安装三级防雷器。即在配电柜中总开关前端安装二级防雷器,这样既节省空间,又起到了美观、易维护的作用,并分别在市电配电柜、UPS配电柜各自的总开关前端安装三级防雷器,以保护机房内的设备。 五、接地系统 本机房有四种接地形式,即:计算机专用直流逻辑地、交流工作地、安全保护地、防雷保护地。 1、计算机机房接地系统 在机房活动地板下方安装铜排网,将机房所有计算机系统非带电壳体接入铜排网并由此引入大地。机房接地系统采用专用接地系统,专用接地系统由大楼提供,接地电阻≤1Ω。 2、机房内等电位接地具体做法: 用3mm×30mm的铜带,在机房活动地板下交叉排成方格,其交叉点与活动地板支撑的位置交错排列,交点处压接在一起,并在铜带下用垫绝缘子固定。在机房离墙400mm的距离沿墙采用3mm×30mm紫铜条造成一个M型或S型的地网,紫铜条间的接驳位用10mm镙母压接后烧铜焊,通过35mm2铜缆引下线驳接建筑物的联合接地体,这样就形成一个法拉第笼式接地系统,并保证接地电阻不大于1Ω。 机房等电位连接:将天花龙骨、墙身龙骨、活动地板支架、非计算机系统的管、金属的门、窗等均做等电位连接,并分别取多点通过16m m2的地线接入机房接地铜排网。 3、交流工作地 在电力系统中运行需要的接地(配电柜中性点接地),应不大于4欧姆。与变压器或发电机直接接地的中性点连接的中性线称零线;将零线上的一点或多点与地再次做电气连接称重复接地。交流工作地是中性点可靠地接地。当中性点不接地时,若一相碰地而人又触及另一相时,人体所受到的接触电压将超过相电压,而当中性点接地时,且中性点的接地电阻很小,则人体受到电压相当于相电压;同时若中性点不接地时,由于中性点对地的杂散抗阻很大,因此接地电流很小;相应的保护设备不能迅速切断电源,对人及设备产生危害;反之则行。 4、安全保护地 安全保护地是指机房内所有机器设备的外壳以及电动机、空调机等辅助设备的机体(外壳)与地之间做良好的接地,应不大于4欧姆。当机房内各类电器设备的绝缘体损坏时,将会对设备和操作及维修人员的安全构成威胁。所以应使设备的外壳可靠接地。 5、防雷保护地 即机房的防雷系统的接地,一般以水平连线和垂直接地桩埋设地下,主要是把雷电电流由受雷装置引到接地装置,应不大于10欧姆。 防雷装置可分为三个基本部分:即接闪器、引下线和接地装置,接闪器即接受雷电电流的金属导体。本方案只将加装防雷器的引下线与动力配电柜内的接地铜排连接。要求接地电阻≤4Ω。 六、防雷设计方案 1、直击雷的防护 机房所在大楼已有避雷针、避雷带等外部防雷设施,不再作外部防雷补充设计。如之前无直击雷防护,需在机房顶层做避雷带或是避雷网,若机房在空旷地带,视情况还需安装避雷针,避雷针、避雷带必须做好引下线,接入地网。 2、电源系统的防雷 (1)、对于网络集成系统的电源线防护,首先,进入系统总配电房的电源进线,应采用金属铠装电缆敷设,电缆铠装层的两端应良好接地;如果电缆没有铠装层,则就将电缆穿钢管埋地,钢管两端接地,埋地的长度应不小于15米。由总配电房至各大楼的配电箱以及机房楼层配电箱的电力线路,均应采用金属铠装电缆进行敷设。这样可以大大减少电源线感应过电压的可能性。 (2)、在电源线路上安装电源防雷器,是必不可少的防护措施。根据IEC防雷规范中有关防雷分区的要求,将电源系统分为三级保护。 ① 可在系统总配电房的配电变压器低压侧安装流通容量80KA~100KA的一级电源防雷箱。 ② 在各大楼的总配电箱安装通流容量为60KA~80KA的二级电源防雷箱; ③ 在机房的重要设备(如交换机、服务器、UPS等)的电源进线处安装通流容量20~40KA的三级电源防雷器; ④ 在机房控制中心硬盘刻录机及电视墙设备电源处用插座式防雷器。 所有防雷器均应良好接地。选用防雷器要注意接口的形式和接地的可靠性,重要场所应设置专用的接地线,切不可将防雷接地线与避雷针接地线并接,且要尽量远离、分开入地。 3、信号系统的防雷 (1)、网络传输线主要使用的是光纤和双绞线。其中光纤不需要特别的防雷措施,但若室外的光纤是架空的,那么需要将光纤的金属部分接地。而双绞线屏蔽效果较差,因此感应雷击的可能性比较大,应将此类信号线敷设在屏蔽线槽中,屏蔽线槽应良好接地;也可穿金属管敷设,金属管应全线保持电气上的连通,并且金属管两端应良好接地。 (2)、在信号线路上安装信号防雷器,对防感应雷是一种行之有效的办法。对于网络集成系统,可在网络信号线进入到广域网路由器之前安装专用信号防雷器;在系统主干交换机、主服务器以及各分交换机、服务器的信号线入口处分别安装RJ45接口的信号防雷器(如RJ45-E100)。信号防雷器的选型应综合考虑工作电压、传输速率、接口形式等。避雷器主要串接在线路的两端设备的接口处。 ① 服务器输入端口处安装单口 RJ45 端口信号避雷器,以保护服务器。 ② 24口网络交换机串联 24 口的RJ45 端口信号避雷器,避免因雷击感应或电磁场干扰沿双绞线窜入而毁坏设备。 ③ 在DDN专线接收设备上安装单口RJ11端口信号避雷器,保护DDN 专线上的设备。 ④ 在卫星接收设备前端安装同轴端口天馈线避雷器,以保护接收设备。 (3)、对于监控系统机房的防雷保护 ① 在硬盘录像机的视频线出线端加装视频信号防雷器或采用机架式视频信号防雷箱,12口全保护,安装方便。 ② 在矩阵与视频分割器的控制线进入端加装控制信号防雷器(DB-RS485/422)。 ③ 机房电话线采用音频信号防雷器,串接在电话机前端电话线处,安装方便,易维护。 ④ 在报警器前端信号线接入处装控制信号防雷器,对报警器信号线做有效的防雷保护。 注意:所有防雷器均应良好接地,选用防雷器要注意接口的形式和接地的可靠性,重要场所应设置专用的接地线,切不可将防雷接地线与避雷针接地线并接,且要尽量远离、分开入地。 4、机房等电位连接 在机房防静电地板下,沿着地面上布置40*3紫铜排,形成闭合环接地汇流母排。将配电箱金属外壳、电源地、避雷器地、机柜外壳、金属屏蔽线槽、门窗等穿过各防雷区交界的金属部件和系统设备的外壳,以及对防静电地板下的隔离架进行多点等电位接地就进至汇流排。并采用等电位连接线4-10mm2铜芯线螺栓紧固的线夹作为连接材料。同时在机房找出建筑物主钢筋,经测试确与避雷带连接良好,用14mm镀锌圆钢通过铜铁转换接头将接地汇流母排与之连接起来。形成等电位。采用联合接地网,目的是消除各地网之间的电位差,保证设备不因雷电的反击而损坏。 5、接地网制作设计 接地是避雷技术非常重要的环节之一,无论是直击雷或感应雷,最终都是把雷电流引入大地。因此,对于敏感的数据(信号)通信设备而言,没有合理而良好的接地系统是不能可靠避雷的。因此,对接地电阻>1Ω 的大楼地网,需按照规范要求整改,以提高机房接地系统的可靠性。根据具体情况,通过沿机房大楼建立不同形式的接地网(包括水平接地体、垂直接地体)来扩大接地网的有效面积和改善地网的结构。 采用共用接地装置时,共用接地电阻值不应大于1Ω; 采用专用接地装置时,其接地电阻值不应大于4Ω。 基本要求如下: 1 )在大楼周围做接地网,用较少的材料和较低的安装成本,完成最有效的接地装置; 2)接地电阻值要求 R ≤1Ω ; 3)接地体应离机房所在主建筑物 3~5m 左右设置; 4)水平和垂直接地体应埋入地下0.8m 左右,垂直接地体长 2.5m ,每隔 3~5m 设置一个垂直接接地体,垂直接地体采用 50×50×5mm 的热镀锌角钢,水平接地体则选 50×5mm 的热镀锌扁钢; 5)在地网焊接时,焊接面积应≥6 倍接触点,且焊点做防腐蚀防锈处理; 6)各地网应在地面下0.6~0.8m 处与多根建筑立柱钢筋焊接,并作防腐蚀、防锈处理; 7)土壤导电性能差时采用敷设降阻剂法,使接地电阻≤1Ω ; 8)回填土必须是导电状态较好的新粘土; 9)与大楼基础地网多点焊接,并预留接地测试点。 以上是一种传统的廉价实用的接地方式,根据实际情况,接地网材料也可以选用新型技术接地装置,如免维护电解离子接地系统、低电阻接地模块、长效铜包钢接地棒等等。   五、机房防雷接地注意事项 1、考虑到雷电或其他电信设备的干扰,计算机房不宜设置在大楼的顶层或靠外墙侧,特殊情况限制的,应设置屏蔽层防止雷电干扰。对于特别重要的计算机系统,应考虑设置独立的屏蔽机房。建筑物(包括计算机机房)内设备及管线接地安装应按照相关规范执行,做好等电位联结; 2、防止雷电危害还应防雷击引起的电磁脉冲,计算机房的配电箱应设置SPD(防电磁浪涌)保护装置,防止机房供电电源由于雷击电磁脉冲而造成断电。另外,对于重要的系统主机,其通讯电缆也应设置SPD保护装置,由于通讯电缆数量一般比较多,因此通讯线的保护设置应根据具体实际情况合理设置; 3、电气接地系统宜采用TN-S接地系统,PE线与相线分开,机房电源接入处应做重复接地; 4、机房接地一般分为交流工作接地、直流工作接地、安全工作接地、防雷保护接地。根据《建筑物防雷设计规范》的要求,防雷设计采用共用接地系统时,各接地系统宜共用一组接地装置。信息系统的所有外露导电物(各种箱体、壳体、机架等金属组件)应建立一等电位联结网络。 因此,电气防雷设计应在计算机房设置专用的等电位联结排,通过引下线与大楼总等电位联结排连接。根据共用接地系统的层层等电位原则,采用结构主钢筋作为引下线,更适用于共用接地系统。另外强调,大楼接地系统的接地电阻不应大于1Ω。 

    01-09 75浏览
  • 铅酸蓄电池充、放电工作原理

    在数据中心和通信行业,会用到很多蓄电池,这些蓄电池可作为交流不间断电源系统、直流电源系统备用电源,又可作为油机等起动动力电源,还可作为高压配电系统中的直流操作及控制电源。

    2024-09-23 719浏览
  • 核心网电路交换域与分组交换域对比

    核心网;简单点说,可以把移动网络划分为三个部分,基站子系统,网络子系统,和系统支撑部分比如说安全管理等这些。核心网部分就是位于网络子系统内,核心网的主要作用是把A口上来的呼叫请求或数据请求,接续到不同的...

    2024-07-23 173浏览
  • 互连技术升级,重构数据中心架构会被

    互连系统的范围比较广,包含了PCB上的互连,也包括了芯片之间的互连和芯片内部的互连,还包括了系统之间的互连等等

    2024-07-12 394浏览
  • 云服务器是云计算服务的重要组成部分

    服务器是信息时代的重要设备之一,在缺少服务器的情况下,我们将无法高效地同其它通信设备进行通信。依据服务器类型的不同,服务器可以分为高防服务器、游戏服务器等等。在本文中,小编将对云服务器予以介绍,主要...

    2024-06-21 227浏览
  • 云存储的三大分类和两个隐患

    存储是各电子设备均存在的组件或者能力之一,通过存储,能够帮我们存储运行过程中产生的数据。依据存储的不同,可分为对象存储、文件存储等。目前,最火热的存储方式之一,便是云存储。为增进大家对云存储的认识,...

    2024-06-21 304浏览
  • 网络处理器与传统处理器的比较

    处理器可以说是机器的大脑,通过处理器,能够对0、1数据进行处理。为增进大家对处理器的认识,本文将对处理器,以及网络处理器的应用场景予以介绍。如果你对处理器、网络处理器具有兴趣,不妨和小编一同继续往下阅...

    2024-06-21 180浏览
  • 什么是DDR?

    无论对于芯片设计商还是器件制造商来说,DDR内存可谓是无处不在——除了在服务器、工作站和台式机中之外,还会内置在消费类电子产品、汽车和其他系统设计中。每一代新的 DDR(双倍数据速率)SDRAM(同步动态随机内存)标准都会在许多方面带来显著改进,包括速度、尺寸和功率效率。 一、DDR是什么? DDR概述 DDR SDRAM(Double Data Rate Synchronous Dynamic Random Access Memory,双数据率同步动态随机存储器),简称为DDR, 简单的说就是双倍传输速率的SDRAM。 普通SDRAM内存的工作方式是在一个时钟周期的上升沿触发进行工作。也就是说在一个时钟周期内,内存将工作一次。 而DDR的技术使得内存可以在每一个时钟周期的上升沿和下降沿分别触发一次,这样就使得在一个时钟周期内内存可以工作两次,这样就使得DDR内存在相同的时间内能够完成普通内存一倍的工作量。 DDR定义里的“同步”是什么意思? “同步”是指内存工作需要同步时钟。DDR内部命令的发送与数据传输都以它为基准。 DDR的全拼是Double Data Rate SDRAM双倍数据速率同步动态随机存取内存, 主要用在电脑的内存。DDR的特点就是走线数量多,速度快,操作复杂,给测试和分析带来了很大的挑战。 目前DDR技术已经发展到了DDR5,性能更高,功耗更低,存储密度更高,芯片容量大幅提升,他的数据速率在3200-6400MT/s。 DDR本质上不需要提高时钟频率就能加倍提高SDRAM的速度,它允许在时钟的上升沿和下降沿读出数据,因而其速度是标准SDRAM的两倍,至于地址与控制信号则与传统SDRAM相同,仍在时钟上升沿进行数据判断。 DDR核心技术点就在于双沿传输和预取Prefetch. DDR的频率包括核心频率,时钟频率和数据传输频率。核心频率就是内存的工作频率;DDR1内存的核心频率是和时钟频率相同的,到了DDR2和DDR3时才有了时钟频率的概念,就是将核心频率通过倍频技术得到的一个频率。数据传输频率就是传输数据的频率。 DDR存储器的身影现在到处可见 — 不仅在服务器、工作站和台式电脑中使用,还广泛嵌入在消费电子、汽车和其他系统设计中。 每一代 DDR SDRAM(双倍数据速率同步动态随机存取存储器)的推出,都伴随着速度提升、封装尺寸减小,以及功耗降低(参见表 1)。 这些功能特性方面的改进,也使得设计人员在降低设计裕量、提高信号完整性和互操作性方面面临更多的挑战。 表 1 JEDEC 定义了 DDR 规范 DDR内存原理 基本DDR subsystem架构图:DDRC +DDRphy +SDRAM颗粒,DDR IP一般包括DDR Controller和DDR PHY,内部涉及的内容包括但不限于以下几个方面:数据保序、仲裁、最优调度、协议状态机设计、防饿死机制、bypass通路、快速切频、DDR training DDR工作原理 当时钟脉冲达到一定频率时,DDR存储器才开始工作,此后发生的就是“读-存-读”的过程。在此过程中,器件芯片会从主在取数据,然后与入数据在储区。当写入操作完成后,再从存储区中取出数据,並将其传输到处理器中,然后根据需要将数据处理,再把最终结果返回到主存。 DDR 的双倍数据传输率其实就是每个时钟周期内读写一次数据,即DDR芯片可以在每个时钟周期内分别完成“读-存”和“存-读”操作,从而提高存储器的传输效率。 DDR内存通过双倍数据速率的传输方式,结合多通道传输和数据校验等技术,提高了数据传输效率和可靠性。这使得 DDR 成为了计算机内存的主流技术。 内存芯片 - DDR内存模块中包含多个内存芯片,每个芯片有自己的存储单元。每个存储单元都有一个地址,用于在读取或写入数据时进行寻址。 数据总线 - DDR内存模块连接到计算机的内存控制器,通过数据总线进行数据传输。数据总线可以同时传输多个数据位,例如 64 位或 128位。 时钟信号 - DDR内存模块通过时钟信号进行同步操作。时钟信号用来控制数据的传输速率,每个时钟周期内有一个上升沿和一个下降沿。上升沿时,数据从内存芯片传输到数据总线;下降沿时,数据从数据总线传输到内存芯片。 预充电 - 在开始传输数据之前,DDR内存模块会先进行预充电操作。预充电是将存储单元中的电荷恢复到初始状态,以确保接下来的数据传输是准确的。 数据传输 - DDR 采用了多通道的数据传输方式,即同时传输多个数据位。这样可以在每个时钟周期内传输更多的数据。 DDR接口 电子器件工程联合会(JEDEC)现已针对小功率DDR(LPDDR)或移动设备(移动DDR)推出了全新的 DDR标准。 这个标准使用了更低的信号幅度,进一步改善了功耗情况。目前,该标准已经达到了 DDR1 的技术指标。 工程师们将无需重新设计器件的链路层或协议层,便可享受功耗降低带来的种种优势,因为只需很少的投资便能调整系统的电压电平。 DDR接口可传输控制、地址、时钟、选通和数据信号。如图 1 所示,时钟、地址和控制信号从存储器控制器单向传输到 DDR芯片;选通和数据信号为双向传输。 在读取操作中,选通和数据信号从DDR芯片传输到存储器控制器。 在写入操作中,信号沿相反方向传输。随着数据传输速率的增加和信号幅度的降低,为了提高信号性能,时钟和选通信号采用差分信号,这样可以消除共模噪声。 其他信号仍然在单端模式下操作,更容易受到噪声、串扰和干扰的影响。 存储器分类 存储器分为内部存储器(内存),外部存储器(外存),缓冲存储器(缓存)以及闪存这几个大类。 内存也称为主存储器,位于系统主机板上,可以同CPU直接进行信息交换。其主要特点是:运行速度快,容量小。 外存也称为辅助存储器,不能与CPU之间直接进行信息交换。其主要特点是:存取速度相对内存要慢得多,存储容量大。 内存与外存本质区别是,一个是内部运行提供缓存和处理的功能,也可以理解为协同处理的通道;而外存主要是针对储存文件、图片、视频、文字等信息的载体,也可以理解为储存空间。 缓存就是数据交换的缓冲区 (称作Cache),当某一硬件要读取数据时,会首先从缓存中查找需要的数据,如果找到了则直接执行,找不到的话则从内存中找。由于缓存的运行速度比内存快得多,故缓存的作用就是帮助硬件更快地运行。 闪存 (Flash Memory)是一种长寿命的非易失性的存储器,数据删除不是以单个的字节为单位而是以固定的区块为单位。 闪存是电子可擦除只读存储器(EEPROM) 的变种,闪存与EEPROM不同的是,EEPROM能在字节水平上进行删除和重写而不是整个芯片擦写,而闪存的大部分芯片需要块擦除。 由于其断电时仍能保存数据,闪存通常被用来保存设置信息,如在电脑的B1OS(基本程序)、PDA(个人数字助理)、数码相机中保存资料等。 存储器主要分为只读存储器 ROM 和随机存取存储器 RAM (random access memory) 两大类 ROM:只读存储器 - ROM 所存数据,一般是装入整机前事先写好的,整机工作过程中只能读出,ROM所存数据稳定,断电后所存数据也不会改变。RAM:随机存取存储器 (random access memory) - RAM 是与 CPU 直接交换数据的内部存储器,它可以随时读写,速度快,通常作为操作系统或其他正在运行中的程序的临时数据存储媒介,当电源关闭时 RAM 不能保留数据。DDR SDRAM 在系统时钟的上升沿和下降沿都可以进行数据传输 - DDR SDRAM在 SDRAM 的基础上发展而来,这种改进型的 DRAM和 SDRAM 是基本一样的,不同之处在于它可以在一个时钟读写两次数据,这样就使得数据传输速度加倍了,也是目前电脑中用得最多的内存,而且具有成本优势。DDR 已经发展至今已经进化到 DDR5,与 DDR4相比,DDR5 在强大的封装中带来了全新的架构。 如何计算DDR带宽? 内存带宽计算公式1: 带宽=内存核心频率×倍增系数×(内存总线位数/8) 内存带宽计算公式2: 带宽=标称频率×线宽 ÷ 8 SDRAM和DDR区别是什么? DDR=双倍速率同步动态随机存储器,是内存的其中一种。DDR取消了主板与内存两个存储周期之间的时间间隔,每隔2个时钟脉冲周期传输一次数据,大大地缩短了存取时间,使存取速度提高百分之三十。 SDRAM是 "Synchronous Dynamic random access memory”的缩写,意思是“同步动态随机存储器”,就是我们平时所说的“同步内存”。从理论上说,SDRAM与CPU频率同步,共享一个时钟周期。 SDRAM内含两个交错的存储阵列,当CPU从一个存储阵列访问数据的同时,另一个已准备好读写数据,通过两个存储阵列的紧密切换,读取效率得到成倍提高。 通常DRAM是有一个异步接口的,这样它可以随时响应控制输入的变化。而SDRAM有一个同步接口,在响应控制输入前会等待一个时钟信号,这样就能和计算机的系统总线同步。 时钟被用来驱动一个有限状态机,对进入的指令进行管线操作。这使得SDRAM与没有同步接口的异步DRAM(asynchronous DRAM)相比,可以有一个更复杂的操作模式。 DRAM单元(cell) DDR SDRAM,是一种双数据速率(DDR)同步动态随机存取存储器(SDRAM)。DDR是SDRAM的更新换代产品,采用5伏工作电压,允许在时钟脉冲的上升沿和下降沿传输数据,这样不需要提高时钟的频率就能加倍提高SDRAM的速度,并具有比SDRAM多一倍的传输速率和内存带宽。 作为现代数字系统里最重要的核心部件之一,应用十分广泛。从消费类电子到商业工业类设备,从终端产品到数据中心,用于CPU进行数据处理运算的缓存。近20多年来,经历了从SDRAM发展到DDR RAM,又从DDR发展到目前的DDR5,每一代 DDR 技术在带宽、性能和功耗等各个方面都实现了显著的进步,极大地推动了计算性能的提升。 二 DDR标准发展和DDR5简介 图1展示的是RAM(Random Access Memory)20多年来的发展历程和信号特点。在SRAM时代,由于较低的信号速率,我们更多关心的是信号的扇出以及走线所带来的容性负载。 在DDR1/2/3时代,信号速率的不断提升,传统的使用集总参数方式来进行电路分析已越发显得不足,我们更关心的是信号的建立保持时间,以及信号线之间的延迟skew。 来到DDR4时代,有限带宽的PCB、连接器等传输通道,把原始信号里的高频分量削弱或者完全去掉,使得信号在时域波形上的表现为边沿变缓、出现振铃或者过冲。 我们要像分析传统串行数据那样去更加关心数据的眼图,接收端模板和误码率。随着AI、机器学习以及5G的发展,以往的DDR4技术,开始显得力不从心。如今DDR5的第5代高速I/O数据传输开始大规模走向市场化。 2.1 DDR5和DDR4性能差别 - DDR5的新特性 如下表所示,DDR5相比DDR4而言,带来了一系列关键的性能提升,同时也带来了新的设计挑战。 DDR4和DDR5比较(源自Rambus) 2.1.1 速率的提升 近年来,内存与CPU性能发展之间的剪刀差越来越大,对内存带宽的需求日益迫切。DDR4在1.6GHz的时钟频率下最高可达 3.2 GT/s的传输速率,最初的 DDR5则将带宽提高了 50%,达到 4.8 GT/s传输速率。DDR5 内存的数据传输速率最终将会达到 8.4 GT/s。 2.1.2 电压的降低 降低工作电压(VDD),有助于抵消高速运行带来的功耗增加。在 DDR5 DRAM 中,寄存时钟驱动器 (RCD) 电压从 1.2 V 降至 1.1 V。命令/地址 (CA) 信号从 SSTL 变为 PODL,其优点是当引脚处于高电平状态时不会消耗静态功率。 2.1.3 DIMM 新电源架构 DIMM是什么? DIMM全称Dual-Inline-Memory-Modules,中文名叫双列直插式存储模块,是指奔腾CPU推出后出现的新型内存条,它提供了64位的数据通道。 DDR5改善了DIMM的工作电压,将供电电压从DDR4的1.2V降至1.1V,从而进一步提升了内存的能效。 使用 DDR5 DIMM 时,电源管理将从主板转移到 DIMM 本身。DDR5 DIMM 将在 DIMM 上安装一个 12 V 电源管理集成电路(PMIC),使系统电源负载的颗粒度更细。PMIC 分配1.1 V VDD 电源,通过更好地在 DIMM 上控制电源,有助于改善信号完整性和噪音。 2.1.4 DIMM通道架构 DDR4 DIMM 具有 72 位总线,由 64 个数据位和 8 个 ECC 位组成。在 DDR5 中,每个 DIMM 都有两个通道。每个通道宽 40 位,32 个数据位和 8 个 ECC 位。虽然数据宽度相同(共 64 位),但两个较小的独立通道提高了内存访问效率。因此,使用 DDR5 不仅能提高速度,还能通过更高的效率放大更高的传输速率。 2.1.5 更长的突发长度 DDR4 的突发长度为4或者8。对于 DDR5,突发长度将扩展到8和16,以增加突发有效载荷。突发长度为16(BL16),允许单个突发访问 64 字节的数据,这是典型的 CPU 高速缓存行大小。它只需使用两个独立通道中的一个通道即可实现这一功能。这极大地提高了并发性,并且通过两个通道提高了内存效率。 2.1.6 更大容量的 DRAM DDR4 在单芯片封装(SDP)中的最大容量为16 Gb DRAM。而DDR5的单芯片封装最大容量可达64 Gb,组建的DIMM 容量则翻了两番,达到惊人的 256 GB。 2.2 DDR5 设计面临的挑战 2.2.1 采用分离式全速率时钟,对应6400M T/s频率的时钟速率高达3.2GHz(未来会支持到8400M T/s)。 DDR5 DQS控制DQ读写时序 时钟控制命令信号,选通信号控制数据。对时钟信号抖动的要求更加严格,对各种命令信号与数据和地址信号的时序要求也更高。 2.2.2 双向复用的数据总线,读写数据分时复用链路。 由于有限的链路通道和布板空间等资源读写操作继续采用共享总线,因此需要分时操作。从验证测试角度来看也需要分别对读和写信号进行分离以检查其是否满足规范。 DDR5读写共享总线 2.2.3 突发DQS和DQ信号在更高速率的背景下在有限带宽的链路传输时带来更多ISI效应问题。 在DQS读写前导位,突发的第一个bit等等均有不同的效应和表现。此外考虑到存储电路在设计上不同于串行电路存在较多的阻抗不匹配,因此反射问题或干扰带来的ISI也会更严重。 DDR5在接收端采用更多的类似高速串行总线的信号处理 因此在接收侧速率大于3600MT/s时采用类似高速串行电路和标准总线中已经成熟的DFE均衡技术,可变增益放大(VGA)则通过MR寄存器配置,以补偿在更高速率传输时链路上的损耗。 DDR4标准采用的CTLE作为常用的线性均衡放大,虽然简单易实现但是其放大噪声的副产品也更为常见,考虑到DDR5总线里的反射噪声比没有采用。另外考虑到并行总线的串扰和反射等各信号抖动的定义和分析也会随之变化。 从测试角度来看,示波器是无法得到TP2点即均衡后的信号的,而仅能得到TP1点的信号,然后通过集成在示波器上的分析软件里的均衡算法对信号进行均衡处理以得到张开的眼图。 眼图分析的参考时钟则来自基于时钟信号的DQS信号。另外眼图测试也从以往仅对DQ进行扩展到包括CMD/ADDR总线。

    2024-06-20 289浏览
  • RDMA入门:基础知识详解

    1. RDMA概念在DMA技术中,外部设备(PCIe设备)能够绕过CPU直接访问主机的系统主存;RDMA(Re

    2024-05-24 386浏览
  • 全球视野:25家最有价值的半导体公司

    市值决定价值,未上市的不在讨论范围之内。半导体行业是一个蓬勃发展的行业,知名公司竞相满足不断增长的需求。本文列出了世界上25家最有价值的半导体公司。为了列出这份名单,我们查看了多个来源,包括行业报告和多个类似的排名。对于上市公司,我们在雅虎财经上检查了截至 2024 年 2 月 15 日的每家公司的市值,非美国公司的市值根据当地汇率转换为美元。为了量化私营公司的“价值”或“规模”,我们根据数据的可用性,选择了估值,或最近一个财年的收入,或员工人数。估值来自主要媒体的报道,基于私营公司的最新一轮融资。年收入或员工人数来自公司的官方声明和公司网站,没有私营公司进入我们的榜单。截至 2 月 15 日,我们按市值升序对全球最有价值的半导体公司进行了排名。25. Cirrus Logic Inc.截至2月15日市值:48.9亿美元Cirrus Logic是一家无晶圆厂半导体公司。Cirrus Logic专注于低功耗、高精度混合信号处理解决方案。该公司还开发了一系列音频产品,包括编解码器组件、智能编解码器和升压放大器。24. Allegro MicroSystems Inc截至 2 月 15 日的市值:60.3 亿美元Allegro MicroSystems是一家专门从事传感器集成电路开发和制造的公司,成立于 2013 年 3月30日,总部位于曼彻斯特。23. Rambus Inc截至2月15日市值:61.3亿美元Rambus是一家半导体公司,生产行业领先的芯片和硅IP。该公司成立于1990年,总部位于圣何塞。22. MACOM Technology Solutions Holdings Inc截至 2 月 15 日的市值:61.9 亿美元MACOM设计、开发和制造半导体和模块,专注于服务于数据中心和电信,成立于2009年3月25日,总部位于洛厄尔。21. 莱迪思半导体截至 2 月 15 日市值:105.3 亿美元莱迪思半导体公司是一家设计、开发和销售可编程逻辑产品及相关软件的公司。该公司成立于1983年,总部位于希尔斯伯勒。20. Qorvo Inc截至2月15日市值:109.7亿美元Qorvo是一家提供射频和功率半导体解决方案的半导体公司。 19. Skyworks Solutions Inc截至2月15日市值:169.6亿美元Skyworks是一家设计、开发和制造专有半导体产品的半导体公司,成立于1962年,总部位于尔湾。18. 联合微电子公司(联电,UMC)截至2月15日市值:198.3亿美元联电是世界上最有价值的晶圆代工厂之一。该公司总部位于新竹,成立于1980年。17. Globalfoundries Inc截至2月15日市值:304.1亿美元GlobalFoundries是一家跨国晶圆代工厂。16. 安森美半导体公司截至2月15日市值:349亿美元安森美半导体公司总部位于亚利桑那州斯科茨代尔,成立于1999年,该公司为各种应用提供电源和信号管理、逻辑、分立和定制设备。15. Monolithic Power Systems Inc截至2月15日市值:357.9亿美元Monolithic Power Systems是一家制造和设计基于半导体的电力电子解决方案的全球性公司,总部位于华盛顿州柯克兰。14. 意法半导体(STMicroelectronics NV)截至2月15日市值:405.7亿美元意法半导体公司总部位于瑞士Plan-Les-Ouates,提供各种半导体产品,包括硅芯片和智能卡。13. Microchip Technology Inc截至2月15日市值:435.4亿美元Microchip是一家美国半导体公司,生产包括IC在内的各种产品,成立于1989年,总部位于亚利桑那州钱德勒。12. Marvell Technology Inc截至2月15日市值:596.2亿美元Marvell提供包括 5G 网络和汽车创新在内的各种技术所需的基本技术。11. 恩智浦半导体公司截至2月15日市值:603.1亿美元恩智浦是一家荷兰半导体公司,设计和制造半导体,包括集成电路、功率模块和开关,总部位于荷兰埃因霍温。10. 美光科技公司截至2月15日市值:903.3亿美元美光设计和制造包括动态随机存取存储器芯片 (DRAM),成立于 1978 年 10 月 5 日,总部位于爱达荷州博伊西。9. ADI公司截至2月15日市值:923.9亿美元ADI是一家美国跨国半导体公司,总部位于马萨诸塞州威尔明顿。该公司专门从事数据转换、信号处理和电源管理技术。8. Arm Holdings截至2月15日市值:1299.5亿美元Arm是一家英国半导体和软件公司,设计中央处理器(CPU)内核。7. 德州仪器公司截至2月15日市值:1435.5亿美元德州仪器是一家美国科技公司,总部位于德克萨斯州达拉斯。它设计和制造模拟芯片和嵌入式处理器。6. 高通公司截至2月15日市值:1718亿美元高通是一家美国跨国公司,总部位于加利福尼亚州圣地亚哥。该公司创建与无线技术相关的半导体、软件和服务。5. 英特尔公司截至 2 月 15 日的市值:1868.4 亿美元英特尔是一家设计、开发、制造和销售一系列半导体产品的全球性公司。4. AMD截至2月15日市值:2887.4亿美元AMD是一家美国公司,总部位于加利福尼亚州圣克拉拉。该公司开发了一系列产品,包括微处理器、主板芯片组、嵌入式处理器和图形处理器。3. 博通公司(Broadcom)截至2月15日市值:5909亿美元Broadcom是一家设计、开发和供应半导体的全球技术公司。2. 台积电截至2月15日市值:6704.5亿美元台积电总部位于新竹,是全球最大的晶圆代工厂。1. 英伟达(NVIDIA)公司截至2月15日的市值:1.83 万亿美元NVIDIA成立于 1993年4月5日,总部位于加利福尼亚州圣克拉拉,是图形处理单元 (GPU)设计的领先企业。 来源:半导体产业纵横 声明:本文由半导体材料与工艺转载,仅为了传达一种观点,并不代表对该观点的赞同或支持,若有侵权请联系小编,我们将及时处理,谢谢。

    2024-02-28 294浏览
正在努力加载更多...
广告