三相逆变电路导通原理及死区问题分析
电路一点通 2025-02-17

文章目录

    • 4.1.理论分析
    • 4.2.实际波形
    • 4.3.MOS关断时的尖峰电压问题
    • 1.三相逆变电路
    • 2.导通原理
    • 3.方波六步换相时序分析
    • 4.死区问题
    • 5.带死区的互补载波电流流向分析

1.三相逆变电路

image-20210708102938999

2.导通原理

image-20210708102954341

如上图所示,为一相的逆变桥。上下MOS管不能同时导通,那么可以有几种控制方式:

  1. PWM控制上管,下管电平控制(恒高或者横低);

  2. PWM控制下管,上管电平控制;

  3. 上下管都是PWM控制;

  4. 某个管的控制可以是PWM控制和电平控制都有。

  • 方式3称为互补载波,也就是上下管的PWM是互补的,这样才能不同时导通。

  • 方式1和2这两种方式又称为单桥臂载波,在方波六步换相控制时使用较多。这两种方式中常用的是第1种方式,原因是MOS管用的是N管。上管的MOS管想要正常工作,需要给自举电容充电(注意是外部的自举电容,而非GS结电容)。如下图所示,为自举电容的充电电路。如果用方式1,即上管PWM下管电平,那么下管始终打开,不会影响自举电容的充电,自举电容充电速度快。如果用方式2,即上管电平下管PWM,那么在速度很低、PWM占空比很小的时候,下管的PWM占空比会影响自举电容的充电,有可能导致自举电容充电充不满,此时上管可能无法正常打开或者关闭。

    PS:如果上管是P管,那么就不需要自举电容。但是P管价格贵,且功率相对N管低。

image-20210708104559905

3.方波六步换相时序分析

根据霍尔跳变沿可以获得对6个MOS管的控制顺序,这里先假设直到这个控制顺序,为M1M2->M2M3->M3M4->M4M5->M5M6->M6M1->M1M2。先以M1M2导通为例,如下图随时,使用上管PWM下管电平控制的方式。

image-20210708105216041

当M1的PWM处于ON的时候,电流流向如下:

image-20210708105308891

当M1位OFF的时候,由于电机线圈为感性负载,所以需要续流,此时只能通过MOS管的体二极管进行续流,如下图所示。此时体二极管导通后会将UW等效的电流源两端电压钳位到0.7V,所以此时电流源两端压差很小,根据U=Ldi/dt可知放电时间会很长,故此时的续流称为慢续流。相对快续流而言,慢续流电流下降慢,维持力矩时间长。如果是快续流的话,绕组内会存在一段时间没有电流,就不会对外提供力矩了。

慢续流的方式靠MOS管的体二极管来续流,如果时间比较长那么体二极管发热大,续流损耗也变大。所以有的时候当M1关闭后可以打开M4,让续流经过MOS管的S到D,也就是使用Rdson来续流,这样损耗就会变小。此时的模式就是互补载波模式了。

image-20210708105402649

4.死区问题

4.1.理论分析

对于上下管都使用PWM控制的方式,在波形跳边沿的地方,存在死区问题。由于MOS管的开关是对GS结电容进行充放电,当电压跳过GS阈值电压时,MOS管的开关状态就发生变化。那么如果PWM不加入死区控制,可能导致一个MOS还没关闭,另一个MOS就开通了,也就是同一桥臂的两个管子同时导通,电源短路。

image-20210708110202463

此时解决办法是加入PWM死区,也就是让PWM1L提前变成OFF,让PWM1H延后变成ON。即同时增加两个波形都为OFF的时间,这样两个MOS管都处于关闭的状态,如下图所示。

image-20210708110703137

这个死区时间在实现功能的基础上肯定是越小越好,因为死区时间太长的话PWM的最大占空比做不上去,电机的功率也就上不去。死区时间从单片机PWM到驱动电路再到MOS管的栅极都有一定的硬件延时,所以具体时间需要根据调试确定。可以通过提高MOS管的充放电速度来减小死区时间,但是可能会带来其他问题,比如震荡、EMC问题等。

此外死区时间的设置(注意是设置,不是真正的死区时间,真正的死区时间只与硬件电路有关)与载波频率也有关。因为载波频率越高,周期越小,相同的死区时间的情况下占空比就越小,电机的空滤就提不上去。所以有时候电机功率做不上去会通过降低载波的频率来提升电机功率。

一般载波频率在15KHZ到20KHZ,载频低了,电机会有噪音;载频高了,开关损耗太大。此时的死区时间初始值可设置为4us,然后在根据示波器调试确定最终的死区时间。

4.2.实际波形

如下图所示为实际的波形。黄色波形对应MOS管开通,可见他的开通已经增加了一段死区时间。黄色波形红圈圈出来的地方为米勒平台,一般可以认为在平台区MOS管就开通了。紫色波形对应MOS管关断,紫色波形红圈处有一个向上的凸起,这是因为同一桥臂的两个MOS管另种一个管子导通对另一个管子的影响,这个影响是由米勒效应导致的。

所以图中的波形已经比较危险了,紫色凸起再高一点就导致两个MOS同时导通了。所以实际调试中需要避免出现这种波形。

image-20210708112443924

4.3.MOS关断时的尖峰电压问题

MOS关断的时候电流很短时间内变为0,有很高的di/dt,那么作用到电路的寄生电感上,很容易在DS端产生很高的L*di/dt这样的尖峰电压。

解决办法:

  1. 减缓MOS管的开关速度。本质上就是降低GS结电容的充放电速度,比如增加充放电回路的阻抗、并联GS电容、加大栅极电阻等。

  2. 在MOS管的DS端并联RC吸收电路。

    以上两种方法尽量使用第一种方法进行解决。

5.带死区的互补载波电流流向分析

根据如下控制逻辑控制MOS管的通断。

image-20210708113901697

先从红框分析,此时的电流流向如下:

image-20210708114543892

在切换到下一个状态之前,M3和M6存在一个死区时间,如下图所示。

image-20210708114635786

此时对应的电流流向如下图所示。此时M6关断,V相通过M3的体二极管续流。此时UV两相的压差被M3的体二极管钳位还是0.7V,所以V相的电流续流还是慢续流。

image-20210708114732066

然后当M3打开的时候,如果前一时刻的电流续流没有结束,那么还会继续向上流,然后很快电流就向下流,所以可以忽略这里,直接认为M3导通的时候电流向下流即可,如下图所示。

image-20210708115059632




声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 工业
  • 安防
  • 航空
  • CAN
  • 电动机型号是便于使用、设计、制造

    电动机型号是便于使用、设计、制造等部门进行业务联系和简化技术文件中产品名称、规格、型式等叙述而引用的一种代号。下面为大家介绍电动机型号含义等信息。 一、电动机型号组成及含义 由电机类型代号、电机特点代...

    01-14
  • 直流电机与交流电机的区别

    其中主要包括:输入的电源类型不同,交流电动机用的是交流电源(有单相和三相之分),而直流电动机使用的是直流电源(有恒定的直流电还有脉动的直流电~~)。电机结构不同,比如直流电动机一般都有电刷还有换向器,而...

    01-14
  • 工业机器人的发展背景

    一、工业机器人的发展背景 1920年,捷克剧作家卡里洛·奇别克在其科幻剧本《罗萨姆万能机器人制造公司》(Rossum's Universal Robots)首次使用了ROBOT这个名词,之后便成为机器人的代名词。 1938年3月,The Meccano M...

    01-14
  • 如何学好电气二次回路?

    什么是电气二次回路。简单说,它就是电力系统中的辅助电路,主要负责控制、保护、测量和信号传输等任务。

    01-08
  • 暖风不热的原因有哪些

    一、热源:(共28个因素) 1.1、补水因素: 1.1.1、定压点低:补水泵定压点低,系统中高大建筑不热。 1.1.2、补水泵故障:补水泵出问题,无备用泵,系统严重亏水。 1.1.3、变频器失灵:补水泵变频器出故障,补水不及...

    01-08
  • 无刷直流电机的基本结构

    一、无刷直流电机的基本结构 1、定子 (1)定子铁芯:硅钢片叠压而成,内圆表面开有槽,用于布置定子绕组。 (2)定子绕组:若干线圈。 2、转子:永磁体 (1)外转子型 (2)内转子型 二、内转子型无刷直流电机的工作原理...

    01-08
  • Type-C接口数据线缺点

    Type-C接口数据线伴随着最新的USB3.1标准横空出世,是一种全新的USB Type-C接口形式, TYPE-C数据线有效解决了老式的usb数据线充电传输速度慢,易坏、接触不良;严格规定正反面等问题,Type-C数据线充电传输速度更快,更...

    01-08
下载排行榜
更多
评测报告
更多
广告