三相BLDC控制原理
mouser 2021-11-25

在无刷直流电机BLDC控制里,无论对于带传感器还是无传感器电机,经常会用到超前角/导通角(Lead Angle)。因为电机线圈是感性负载,所以相对于线圈上的加载电压,线圈里的电流会有一定的时延,这会影响电机的效率和产生噪音震动等。

对于BLDC的梯形波/方波控制,调试并选取合适的超前角能在不改变基本控制算法的情况下,明显提升电机控制的效率和震动噪音水平。特别对于带传感器电机,控制时序里的超前角相当于调整电机内部的传感器位置,从而通过用简单易行的软件方法实现等同于以不方便或困难的方式调整传感器物理位置的效果。

1、三相BLDC控制原理(梯形波)

下图表示了无刷电机梯形波控制算法的基本原理。首先,交流电整流为直流电压,后级为变频部分(inverter),包含6个开关器件(FET):上桥臂的U、V、W和下桥臂的X、Y、Z。

按照一定顺序控制这些FET开关器件,比如:

1:U->Y

2:U->Z

3:V->Z

4:V->X

5:W->X

6:W->Y(假定电机方向为正转)

那么电流会按照下面的顺序流过电机线圈:

1:U相到V相(U->V)

2:U相到W相(U->W)

3:V相到W相(V->W)

4:V相到U相(V->U)

5:W相到U相(W->U)

6:W相到V相(W->V)

共6步,如此循环。(如图1所示)

“图1”图1

同理,若电机方向为反转,则开关顺序为:

1:U->Z

2:U->Y

3:W->Y

4:W->X

5:V->X

6:V->Z

这就是无刷电机BLDC的梯形波/方波控制算法。

2、三相BLDC控制时序

无刷电机的控制时序依赖于电机转子位置,为方便说明超前角/导通角,这里以带霍尔传感器的电机为例。按照霍尔芯片的位置判断,反馈应为中断。每检测到一个有效的霍尔位置信号编码(Pattern),就开始换相到下一步,然后接着开始检测下一次的位置反馈中断。如下图2。按照上述6步不断换相的顺序:

1:U->V

2:U->W

3:V->W

4:V->U

5:W->U

6:W->V

再循环往复。

“图2”图2

在每次检测到霍尔位置Pattern时,换相并输出对应的脉宽调制(PWM - Pulse Width Modulation)Pattern。之后,对位置反馈信号开始采样监控,直到再次检测到有效的霍尔位置Pattern。

图中PWM开关信号(U~Z)中的黑色区块为有效电平,内含PWM载波(从几K到几十KHz,Duty可变)。图中的相电压(U相~W相)中的黑色窄柱状波形是在此换相时刻(从此一步切换到下一步PWM Pattern),由于续流等原因(电机线圈的电感)造成的换相电压跳变。

3、超前角

在无刷直流电机(BLDC - BrushLess DC)控制里经常会用到Lead Angle,即超前角/导通角。因为电机线圈是感性负载,所以相对于线圈上的加载电压,线圈里的电流会有一定的时延,从而影响电机的效率和产生噪音。以电机U相电压举例,把上图PWM信号U、X和U相电压波形放大,如下图。其中U相展开可看到实际电压波形,内含PWM载波。忽略PWM载波看包络图,如下图3最下面波形所示。

“图3:U相展开时实际的电压波形”图3:U相展开时实际的电压波形

这里,绿色虚线处是换相点,定义为超前角/导通角0度点。该点位于相电压中点右边(后边)30度。而Lead Angle超前角/导通角,顾名思义就是从超前角0度往左(往前)提前多少度。

一般来说,特别是无刷电机BLDC梯形波控制算法,在电机高转速情况下,需要在每个换相点前对6个PWM输入信号(U~Z)插入一定的Lead Angle超前角/导通角,图4是不同超前角/导通角,从0度、7.5度、15度到30度,所分别对应的输入信号。

“图4”图4

超前角/导通角的调试取决于电机本身参数、电机电压以及电机转速等。一般从经验来说,对于相同电机,在给定的电压下,电机的转速越高,那么就需要更高的超前角/导通角。调试合适的Lead Angle的关键方法就是在电机带负载情况下,在感兴趣的工作转速(或范围)下找出电机效率最高(输出功率/输入功率)、电机噪音和震动最小的情况。

对于带霍尔传感器的电机来说,调整霍尔传感器的物理位置(对应到电子角度)也能起到类似效果。而一般来说,霍尔传感器位于电机内的PCB板上,不太容易调整。反过来说,通过调整Lead Angle超前角/导通角,只要对应好物理角度和电子角度(取决于电机转子的极对数)关系,也能起到类似修正电机内部霍尔传感器物理位置的作用,从而通过简单易行的软件方式(超前角/导通角的调整)实现等同于以不方便或复杂的方式调整传感器物理位置的效果。 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 工业
  • 安防
  • 航空
  • CAN
  • 风电风机故障诊断远程无线管理方案

    风电行业作为可再生能源领域中最具前景的发电方式之一,在全球范围内分布广泛。但是,在风机发生故障时,却总是措手不及。本文将提供可行的方案,能够为解决故障带来便利。   风电行业现状概述 随着“碳中和”和“碳达峰”的热度疯涨,新能源行业势必崛起。风

    04-27
  • 如何将CAN总线升级成CAN FD?

    如何快速升级到CAN FD? 小致百科课堂 · ▴ 点击视频,关注查看更多 ▴ 21世纪初,CAN总线技术迎来了CAN FD时代,数据传输的速率不断提高的同时,极大地缩短了数据传输,尤其是程序下载的时间。那么如何才能将手头的CAN总线升级成CAN FD呢? 致远电子为您提供3

    04-22
  • 一张表看电机的分类

    据说尼古拉·特斯拉(Nikola Tesla)于1888年发明了交流电机。从那时起,由于各种元素创新,例如电机的组成材料(磁铁、钢板等),半导体元器件的材料、部件技术和控制技术等,使电机有了长足发展。例如,在1900年代初期开发的输出功率为5马力的感应电机,在2

    04-21
  • 解析电机的旋转动作和发电作用

    电机的旋转原理 作为电机基础知识,我们将介绍电机原理相关的内容。 关于电流、磁场和力 首先,为了便于后续电机原理说明,我们来回顾一下有关电流、磁场和力的基本定律/法则。虽然有一种怀旧的感觉,但如果平时不常使用磁性元器件,就很容易忘记这些知识。

    04-14
  • 运动控制T型曲线速度规划的matlab、 C语言实现

    ★ 本文介绍了运动控制中常用的梯形速度曲线规划的原理和程序实现,最后给出了测试结果; ” 1 前言 2 理论分析 3 matlab 实现 4 测试结果 5 C语言实现 6 总结 1 前言 在伺服系统以及控制系统的加减速动作中,为了让速度更加平滑,可以引入T型速度曲线规划(T

    03-31
  • CAN总线和RS485总线应用概述

    CAN总线和RS485总线的定义 CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发了的,并最终成为国际标准(ISO11898)。是国际上应用最广泛的现场总线之一。在北美和西欧,CAN总线协议已经成为

    03-30
  • 传感器这么多种,你都知道怎么工作的吗

    布料张力测量及控制原理 ▼ 直滑式电位器控制气缸活塞行程 ▼ 压阻式传感器测量液位的工作原理 ▼ MQN型气敏电阻结构及测量电路 ▼ 气泡式水平仪的工作原理 ▼ 扩散硅式压力传感器 ▼ 应变加速度感应器 ▼ 称重式料位计 ▼ 电子皮带秤重示意图 ▼ 电子吊车秤

    03-26
  • 一文看懂I2C(FPGA实测I2C波形)

    据非官方统计,90%电子行业的公众号都介绍过3种串行通讯协议:UART、SPI和I2C。这3种串行协议也是电子开发行业最常用的协议。前面介绍了 及其 , 。本篇文章介绍I2C通讯协议及其FPGA实测波形。 文末有【I2C官方标准文档下载方法】。 有哪些内容 I2C是什么 5种

    03-25
  • 红电线,黄电线,绿电线,各种颜色电线都代表什么?

    1、依导线颜色标志电路 黑色——装置和设备的内部布线。 棕色——直流电路的正极。 红色——三相电路的C相; 半导体三极管的集电极; 半导体二极管、整流二极管或可控硅管的阴极。 黄色——三相电路的A相; 半导体三极管的基极; 可控硅管和双向可控硅管的控

    03-26
  • 总线隔离后接地出现通讯异常该如何改善?

    在已为大家介绍隔离后接地的ESD作用机理,那么面对总线隔离后由于接地而出现的通讯异常问题该如何改善,本文将为大家介绍对应的改善措施以及电路作用详解。    前言 为保证总线网络的通讯稳定性,通讯接口通常会做隔离,隔离的主要目的: 安规考虑:保护设备

    03-19
  • 常用的电气电路图集

    1 单相照明双路互备自投供电电路 2 双路三相电源自投电路 3 茶炉水加热自动控制电路 4 简单的温度控制器电路 5 简易晶闸管温度自动控制电路 6 用双向晶闸管控制温度电路 7 XCT-101动圈式温度调节仪控温电路 8 电接点压力式温度表控温电路 9 TDA-8601型温度指

    03-08
  • 常见CAN总线干扰现象

    CAN总线由其高可靠和实时性被广泛应用于新能源汽车、轨道交通、医疗、工程机械等行业,但是由于大部分行业工作环境都比较恶劣,所以提高总线抗干扰能力是目前行业用户最为关注的方向。   常见CAN总线干扰现象 如下为一条流水线有两路CAN总线,一条总线有22个

    03-11
下载排行榜
更多
广告
X
广告