解读传感器的几个主要技术指标
eeskill 2022-06-28

技术指标是表征一个产品性能优劣的客观依据。看懂技术指标,有助于正确选型和使用该产品。

传感器的技术指标分为静态指标和动态指标两类。静态指标主要考核被测静止不变条件下传感器的性能,具体包括分辨力、重复性、灵敏度、线性度、回程误差、阈值、蠕变、稳定性等。

动态指标主要考察被测量在快速变化条件下传感器的性能,主要包括频率响应和阶跃响应等。

由于传感器的技术指标众多,各种资料文献叙述角度不同,使得不同人有不同的理解,甚至产生误解和歧义。为此,以下针对传感器的几个主要技术指标进行解读:

1、分辨力与分辨率:

定义:分辨力(ResoluTIon)是指传感器能够检测出的被测量的最小变化量。分辨率(ResoluTIon) 是指分辨力与满量程值之比。

解读1:分辨力是传感器的最基本的指标,它表征了传感器对被测量的分辨能力。传感器的其他技术指标都是以分辨力作为最小单位来描述的。

对于具有数显功能的传感器以及仪器仪表,分辨力决定了测量结果显示的最小位数。例如:电子数显卡尺的分辨力是0.01mm,其示指误差为±0.02mm。

解读2:分辨力是一个具有单位的绝对数值。例如,某温度传感器的分辨力为0.1℃,某加速度传感器的分辨力是0.1g等。

解读3:分辨率是与分辨力相关而且极为相似的概念,都表征了传感器对被测量的分辨能力。

二者主要区别在于:分辨率是以百分数的形式表示传感器的分辨能力,它是相对数,没有量纲。例如上述温度传感器的分辨力为0.1℃,满量程为500℃,则其分辨率为0.1/500=0.02%。

2、重复性:

定义:传感器的重复性(Repeatability)是指在同一条件下、对同一被测量、沿着同一方向进行多次重复测量时,测量结果之间的差异程度。也称重复误差、再现误差等。

解读1:传感器的重复性必须是在相同的条件下得到的多次测量结果之间的差异程度。如果测量条件发生变化,测量结果之间的可比性消失,不能作为考核重复性的依据。

解读2:传感器的重复性表征了传感器测量结果的分散性和随机性。而产生这种分散性和随机性的原因,是因为传感器内部和外部不可避免地存在各种各样的随机干扰,导致传感器的最终测量结果表现为随机变量的特性。

解读3:重复性的定量表述方法,可以采用随机变量的标准差。

解读4:对于多次重复测量情形而言,如果以全部测量结果的平均值作为最终测量结果,则可以得到更高的测量精度。因为平均值的标准差显著小于每个测量结果的标准差。

3、线性度:

定义:线性度(Linearity)是指传感器输入输出曲线与理想直线的偏离程度。

解读1:理想的传感器输入输出关系应该是线性,其输入输出曲线应该是一条直线(如下图中的红色直线)。

但是,实际上的传感器或多或少都存在各种各样的误差,导致实际的输入输出曲线并非是理想的直线,而是一条曲线(如下图中绿色曲线)。

线性度就是表征了传感器实际特性曲线与离线直线之间的差异程度,也称非线性度或非线性误差。

解读2:由于在不同大小的被测量情况下传感器实际特性曲线与理想直线之间的差异是不同的,因此常常以全量程范围内二者差异的最大值与满量程值之比。显然,线性度也是一个相对量。

解读3:由于对于一般测量场合而言,传感器的理想直线是未知的,无从获取。为此,常常采用折中的办法,即直接利用传感器的测量结果计算出与理想直线较为接近的拟合直线。具体计算方法包括端点连线法、最佳直线法、最小二乘法等。

4、稳定性:

定义:稳定性(Stability)是指传感器在一段时间内保持其性能的能力。

解读1:稳定性是考察传感器在一定时间范围内是否稳定工作的主要指标。而导致传感器不稳定的因素,主要包括温度漂移和内部应力释放等因素。因此,增加温度补偿、增加时效处理等措施,对提高稳定性是有帮助的。

解读2:根据时间段的长短不同,稳定性可以分为短期稳定性和长期稳定性。当考察时间过短时,稳定性与重复性相接近。因此,稳定性指标主要考察长期稳定性。具体时间的长短,依据使用环境和要求来确定。

解读3:稳定性指标的定量表示方法,既可以采用绝对误差,也可以使用相对误差。例如,某应变式力传感器的稳定性为0.02%/12h。

5、采样频率:

定义:采样频率(Sample Rate)是指传感器在单位时间内可以采样的测量结果的多少。

解读1:采样频率反映了该传感器的快速反应能力,是动态特性指标中最重要的一个。对于被测量快速变化的场合,采样频率是必须要充分考虑的技术指标之一。依据香农采样定律,传感器的采样频率应不低于被测量变化频率的2倍。

解读2:随着采用频率的不同,传感器的精度指标也相应有所变化。一般而言,采样频率越高,测量精度越低。

而传感器给出的最高精度往往是在最低采样速度下甚至是在静态条件下得到的测量结果。因此,在传感器选型时必须兼顾精度与速度两个指标。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 元器件
  • 电阻
  • 电容
  • 电感
  • 解析传感器的设计的要点

      好的传感器的设计是经验加技术的结晶。一般理解传感器是将一种物理量经过电路转换成一种能以另外一种直观的可表达的物理量的描述。而下文我们将对传感器的概念、原理特

    08-11
  • 电容的充放电时间计算公式

    进入正题前,我们先来回顾下电容的充放电时间计算公式,假设有电源Vu通过电阻R给电容C充电,V0为电容上的初始电压值,Vu为电容充满电后的电压值,Vt为任意时刻t

    08-11
  • 磁敏二极管内部结构与普通二极管有何不同

    磁敏二极管特性磁敏二极管内部结构与普通二极管不同,在P区与N区之间有一线度远大于载流子扩散长度的高纯空间电荷区——1区,在1区的一个侧面上,嵌有一载流子高复合区

    08-10
  • 晶体二极管的种类

    晶体二极管有哪几种晶体二极管的种类有很多,按照制ADC08B200CIVS造它所用的半导体材料,可分为锗二极管(Ge管)和硅二极管(Si管)。根据其不同用途,可

    08-10
  • 热敏电阻技术简介及其应用

    一、PTC热敏电阻的简介PTC热敏电阻发热元件是现代以至将来高科技尖端之产品。它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、

    08-10
  • PTC热敏电阻设计原理

    ptc热敏电阻PTC是PosiTIve Temperature Coefficient 的缩写,意思是正的温度系数,泛指正温度系数很大的半导体材料或元器件。通常

    08-09
  • 热敏电阻的主要特点

    普通电阻器的阻值受温度变化影响很小,但是热敏电阻器完全不同,它的阻值随温度的变化而变化,是一种用温度控制电阻阻值大小的元件。热敏电阻器利用半导体的电阻值随温度显

    08-09
  • 电容滤波电路及波形分析

      常用的滤波电路有无源滤波和有源滤波两大类。电容滤波为无源滤波,本文详细介绍了电容滤波的工作原理以及其作用。  滤波电容的作用简单讲是使滤波后输出的电压为稳定

    08-09
  • DDR4较DDR3有了多大的提升?

      在内存的关键指标中,容量、速度和时序是常被提及的参数,速度普遍意义上被认为是内存带宽。  Intel第六代酷睿Skylake处理器发布后,带来了对DDR4的

    08-09
  • 相序保护器温度保护、漏电保护

    相序保护器是控制继电器的一种,能自动相序判别的保护继电器,避免一些特殊机电设备因为电源相序接反后倒转而导致事故或设备损坏。相序保护器是控制继电器的一种,能自动相

    08-08
  • 常用几类继电器的原理

    功率继电器的原理功率继电器(power relay),是一种在输入量(或激励量)满足某些规定的条件时,能在一个或多个电器输出电路中产生跃变的一种器件。可用于中性

    08-08
  • PTC的主要特性和使用

    PTC简介PTC是对热敏感的电子元件,是一种特殊的热敏电阻。它的基片是酞酸钡与微量的镧族元素,烧结而成的陶瓷半导体,随着掺入酞酸钡中微量元素品种和含量不同,其电

    08-08
下载排行榜
更多
广告