详解51单片机中断
21ic 2021-08-04

51单片机中断级别

中断源

默认中断级别

序号(C语言用)

INT0---外部中断0

最高

0

T0---定时器/计数器0中断

2

1

INT1---外部中断1

3

2

T1----定时器/计数器1中断

4

3

TX/RX---串行口中断

5

4

T2---定时器/计数器2中断

最低

5

中断允许寄存器IE

位序号

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

符号位

EA

-------

ET2

ES

ET1

EX1

ET0

EX0

EA---全局中允许位。

EA=1,打开全局中断控制,在此条件下,由各个中断控制位确定相应中断的打开或关闭。

EA=0,关闭全部中断。

-------,无效位。

ET2---定时器/计数器2中断允许位。 EA总中断开关,置1为开;

ET2=1,打开T2中断。 EX0为外部中断0INT0)开关,……

ET2=0,关闭T2中断。 ET0为定时器/计数器0T0)开关,……

ES---串行口中断允许位。 EX1为外部中断1INT1)开关,……

ES=1,打开串行口中断。 ET1为定时器/计数器1T1)开关,……

ES=0,关闭串行口中断。 ES为串行口(TX/RX)中断开关,……

ET1---定时器/计数器1中断允许位。 ET2为定时器/计数器2T2)开关,……

ET1=1,打开T1中断。

ET1=0,关闭T1中断。

EX1---外部中断1中断允许位。

EX1=1,打开外部中断1中断。

EX1=0,关闭外部中断1中断。

ET0---定时器/计数器0中断允许位。

ET0=1,打开T0中断。

ET0=0,关闭T0中断。

EX0---外部中断0中断允许位。

EX0=1,打开外部中断0中断。

EX0=0,关闭外部中断0中断。

中断优先级寄存器IP

位序号

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

位地址

---

---

---

PS

PT1

PX1

PT0

PX0

-------,无效位。

PS---串行口中断优先级控制位。

PS=1,串行口中断定义为高优先级中断。

PS=0,串行口中断定义为低优先级中断。

PT1---定时器/计数器1中断优先级控制位。

PT1=1,定时器/计数器1中断定义为高优先级中断。

PT1=0,定时器/计数器1中断定义为低优先级中断。

PX1---外部中断1中断优先级控制位。

PX1=1,外部中断1中断定义为高优先级中断。

PX1=0,外部中断1中断定义为低优先级中断。

PT0---定时器/计数器0中断优先级控制位。

PT0=1,定时器/计数器0中断定义为高优先级中断。

PT0=0,定时器/计数器0中断定义为低优先级中断。

PX0---外部中断0中断优先级控制位。

PX0=1,外部中断0中断定义为高优先级中断。

PX0=0,外部中断0中断定义为低优先级中断。

定时器/计数器工作模式寄存器TMOD

位序号

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

位符号

GATE

C/T

M1

M0

GATE

C/T

M1

M0

|-----------------定时器1------------------------|--------------------定时器0----------------------|

GATE---门控制位。

GATE=0,定时器/计数器启动与停止仅受TCON寄存器中TRX(X=0,1)来控制

GATE=1,定时器计数器启动与停止由TCON寄存器中TRX(X=0,1)和外部中断引脚(INT0INT1)上的电平状态来共同控制。

C/T---定时器和计数器模式选择位。

C/T=1,为计数器模式;C/T=0,为定时器模式。

M1M0---工作模式选择位。

M1

M0

工作模式

0

0

方式0,为13位定时器/计数器

0

1

方式1,为16位定时器/计数器

1

0

方式28位初值自动重装的8位定时器/计数器

1

1

方式3,仅适用于T0,分成两个8位计数器,T1停止工作

定时器/控制器控制寄存器TCON

位序号

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

符号位

TF1

TR1

TF0

TR0

IE1

IT1

IE0

IT0

TF1---定时器1溢出标志位。

当定时器1记满溢出时,由硬件使TF11,并且申请中断。进入中断服务程序后,由硬件自动清0。需要注意的是,如果使用定时器中断,那么该位完全不用人为去操作,但是如果使用软件查询方式的话,当查询到该位置1后,就需要用软件清0

TR1---定时器1运行控制位。

由软件清0关闭定时器1。当GATE=1,且INIT为高电平时,TR11启动定时器1;当GATE=0时,TR11启动定时器1

TF0---定时器0溢出标志,其功能及其操作方法同TF1

TR0---定时器0运行控制位,其功能及操作方法同TR1

IE1---外部中断1请求标志。

IT1=0时,位电平触发方式,每个机器周期的S5P2采样INT1引脚,若NIT1脚为定电平,则置1,否则IE10

IT1=1时,INT1为跳变沿触发方式,当第一个及其机器周期采样到INIT1为低电平时,则IE11IE1=1,表示外部中断1正向CPU中断申请。当CPU响应中断,转向中断服务程序时,该位由硬件清0

IT1外部中断1触发方式选择位。

IT1=0,为电平触发方式,引脚INT1上低电平有效。

IT1=1,为跳变沿触发方式,引脚INT1上的电平从高到低的负跳变有效。

IE0---外部中断0请求标志,其功能及操作方法同IE1

IT0---外部中断0触发方式选择位,其功能及操作方法同IT1

从上面的知识点可知,每个定时器都有4种工作模式,可通过设置TMOD寄存器中的M1M0位来进行工作方式选择。

方式1的计数位数是16位,对T0来说,由TL0寄存器作为低8TH0寄存器作为高8位,组成了16位加1计数器。

关于如何确定定时器T0的初值问题定时器一但启动,它便在原来的数值上开始加1计数,若在程序开始时,我们没有设置TH0TL0,它们的默认值都是0,假设时钟频率为12MHz12个时钟周期为一个机器周期,那么此时机器周期为1us,记满TH0TL0就需要216 -1个数,再来一个脉冲计数器溢出,随即向CPU申请中断。因此溢出一次共需65536us,约等于65.6ms,如果我们要定时50ms的话,那么就需要先给TH0TL0装一个初值,在这个初值的基础上记50000个数后,定时器溢出,此时刚好就是50ms中断一次,当需要定时1s时,我们写程序时当产生2050ms的定时器中断后便认为是1s,这样便可精确控制定时时间啦。要计50000个数时,TH0TL0中应该装入的总数是65536-50000=15536.,把15536256求模:15536/256=60装入TH0中,把15536256求余:15536/256=176装入TL0中。

以上就是定时器初值的计算法,总结后得出如下结论:当用定时器的方式1时,设机器周期为TCY,定时器产生一次中断的时间为t,那么需要计数的个数为N=t/TCY ,装入THXTLX中的数分别为:

THX=(65536-N)/256    ,      TLX=(65536-N)%256 <x01>

中断服务程序的写法

void 函数名()interrupt 中断号 using 工作组

{

中断服务程序内容

}

在写单片机的定时器程序时,在程序开始处需要对定时器及中断寄存器做初始化设置,通常定时器初始化过程如下:

1)对TMOD赋值,以确定T0 T1的工作方式。

2)计算初值,并将初值写入TH0TL0TH1TL1

3)中断方式时,则对IE赋值,开放中断。

4)使TR0TR1置位,启动定时器/计数器定时或计数。

例:利用定时器0工作方式1,实现一个发光管以1s亮灭闪烁。

程序代码如下:

#include<reg52.h>

#define uchar unsigned char

#define uint  unsigned int

sbit led1=P1^0;

uchar num;

void main()

{

TMOD=0x01; //设置定时器0位工作模式1M1,M001

TH0=(65536-45872)/256; //装初值11.0592M晶振定时50ms数为45872

TL0=(65536-45872)%256;

EA=1; //开总中断

ET0=1; //开定时器0中断

TR0=1; //启动定时器0

while(1)

{

if(num==20) //如果到了20次,说明1秒时间

{

led1=~led1; //让发光管状态取反

num=0;

}

}

}

void T0_time()interrupt 1

{

TH0=(65536-45872)/256; //重新装载初值

TL0=(65536-45872)%256;

num++;

}

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 单片机
  • 嵌入式
  • MCU
  • STM
  • ARM Cortex系列处理器知识点汇总

    最近因为要为芯片选定核,所以就在了解哪些核合适且性价比好,这是一个需要结合产品各类技术、市场分析的活,看似简单却还是需要一些储备的,今天选了一篇ARM Cortex系列的科普文章与大家分享。 众所周知,英国的ARM公司是嵌入式微处理器世界当中的佼佼者。AR

    05-11
  • 你的CPU属于哈佛结构还是冯诺依曼结构?

    现代的CPU基本上归为冯诺伊曼结构(也称普林斯顿结构)和哈佛结构。 冯洛伊曼结构就是我们所说的X86架构,而哈佛结构就是ARM架构。一个广泛用于桌面端(台式/笔记本/服务器/工作站等),一个雄踞移动领域,我们的手持设备(平板\手机用的大多就是他了)。 01

    05-10
  • 如何批量修改MCU封装管脚定义

    在做产品开发时,为了缩短研发周期,我们一般都是直接找来参考设计做参考。这些参考资料要么是来自原厂的,要么是来自方案商的。  接触过这么多的参考设计资料,发现大部分的资料都有一个通病,就是不少MCU的PIN脚定义都只是标出IO口的定义,其它复用​​​​功能

    05-08
  • MCU为什么要消抖动

    简单的说,进入了电子,不管是学纯模拟,还是学单片机,DSP、ARM等处理器,或者是我们的FPGA,一般没有不用到按键的地方。按键:人机交互控制,主要用于对系统的控制,信号的释放等。因此在这里,FPGA上应用的按键消抖动,也不得不讲! 一、为什么要消抖动 在

    05-07
  • 51单片机的ISP下载知识

    本文详细介绍了串口、51单片机的ISP下载等基础知识,已经学过单片机的也可以看看,加强一下对这方面的了解。 串口 串行接口简称串口,也称串行通信接口,是采用串行通信方式的扩展接口。 我们比较熟悉的USB接口,全名通用串行总线(Universal Serial BUS),就

    05-06
  • 硬件开发如何选择合适的MCU

    点击上方关注我们! 我在做硬件开发时,如果遇到的是一个新产品,新项目,之前没有做过的,没有任何的经验,在选MCU时,我一般是这样操作的。 首先,根据产品的需求,整理出一份硬件规格。比如,电源管理,传感器接口,人机交互接口等。 然后,整理出整个原理

    05-06
  • 单片机的功耗怎么算的?

    单片机的功耗是非常难算的,而且在高温下,单片机的功耗还是一个特别重要的参数。暂且把单片机的功耗按照下面的划分。 暂且把单片机的功耗按照下面的划分。 1.内部功耗(与频率有关) 2.数字输入输出口功耗 2.1输入口 2.2输出高 2.3输出低 3.模拟输入口功耗从

    05-07
  • 嵌入式工程师必备工具:I2C和SPI总线协议

    IIC vs SPI 现今,在低端数字通信应用领域,我们随处可见IIC (Inter-Integrated Circuit) 和 SPI (Serial Peripheral Interface)的身影。原因是这两种通信协议非常适合近距离低速芯片间通信。Philips(for IIC)和Motorola(for SPI) 出于不同背景和市场需求

    04-30
  • 嵌入式面试注意事项

    找工作也是一门技能,有的人很快就找到自己喜欢的工作,有的人找了很久也没找到合适的工作。 下面给大家分享几点找工作过程中存在的“潜规则”内容。 1、面试的本质不是考试,而是告诉面试官你会做什么 经验不够的小伙伴特别容易犯的一个错误,不清楚面试官到

    04-29
  • 为什么需要RTOS?

    很多单片机初学者都是从裸机开始的,裸机确实也能开发出好的产品,但作为一个嵌入式软件工程师,如果只能用裸机开发产品,那肯定是不够的。 要从裸机的思维转变到RTOS的思维,其实需要一个过程,而且开始的一段时间会很痛苦。但过一段时间理解了一些内容,能

    04-28
  • 使用RTOS的8个理由

    嵌入式系统中,有很多方式实现任务调度。功能有限的小系统中,无限循环足够实现系统功能。当软件设计变得庞大且复杂时,设计师应该考虑使用实时操作系统。 下面给大家分享使用RTOS的8个理由: 1.硬实时响应 基于优先级抢占的RTOS,根据任务的实时需求,执行优

    04-26
  • 单片机延时程序,Keil C编译器实现

    应用单片机的时候,经常会遇到需要短时间延时的情况。需要的延时时间很短,一般都是几十到几百微妙(us)。有时候还需要很高的精度,比如用单片机驱动 DS18B20的时候,误差容许的范围在十几us以内,不然很容易出错。这种情况下,用计时器往往有点小题大做。而

    04-26
下载排行榜
更多
广告
X
广告