关注回复“加群”,加入硬件电子学习交流群。本期的电路图来自ZLinear的开源数据采集板卡DL8884_RFN,是一个比较常见的电压偏置采集法(电路图已取得作者授权发文)。
PCB布线工作对于很多工程师来讲就是连连看,而且还是一项非常枯燥乏味的工作。这其实只是一个初级的认知,一位优秀的PCB设计工程师还是能做很多工作并能解决很多产品设计中的问题的。本文结合一些大厂的设计规则以及部分的技术文章,将分享一些PCB设计中布线的要点,仅供参考。 1、通用做法 在进行PCB 设计时,为了使高频、高速、模拟电路板的设计更合理,抗干扰性能更好,应从以下几方面考虑: (1)合理选择层数;在 PCB 设计中对高频、高速电路板布线时,利用中间内层平面作为电源和地线层,可以起到屏蔽的作用,能有效降低寄生电感;还可以降低信号间的交叉干扰。 (2)走线方式;走线按照 45°角拐弯或圆弧拐弯,这样可以减小高频、高速信号的反射和相互之间的耦合。 (3)走线长度;没有特殊要求的情况下,走线长度越短越好(有损耗要求的要根据实际情况而定);相邻布线时,线与线之间并行距离越短越好。 (4)过孔设计以及数量;过孔设计时,要注意尽量使过孔的阻抗与传输线的阻抗相互一致或者尽量一致;同时。过孔数量越少越好,因为过孔很容易引起阻抗不连续。 (5)相邻层间布线方向;层间布线方向应该取垂直方向,就是上一层为水平方向,相邻的层为垂直方向,这样可以减小信号间的干扰。 (6)包地;很多时候,工程师都认为对重要的信号线进行包地处理,可以显著提高该信号的抗干扰 能力,但是一定要注意避免包地引入新的问题,比如是否导致空间变小,或者阻抗发生了变化。当然,还可以对干扰源进行包地处理,使其不能干扰其它信号。高速PCB设计时,保护地线要还是不要,这是个问题? (7)信号线;信号走线不能环路,减少环路引入噪声。 2、布线优先次序 关键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线 密度优先原则:从单板上连接关系最复杂的器件着手布线。从单板上连线 最密集的区域开始布线 注意点: a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。必要时应采取手工优先布线、屏蔽和加大安全间距等方法。保证信号质量。 b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。 c、有阻抗控制要求的网络应尽量按线长线宽要求布线。 3、时钟的布线 时钟线是对EMC 影响最大的因素之一。在时钟线上应少打过孔,尽量避免和其它信号线平行走线,且应远离噪声源或者热源,避免对信号线的干扰。同时应避开板上的电源部分,以防止电源和时钟互相干扰。 如果板上有专门的时钟发生芯片,其下方不可走线,应在其下方铺铜,必要时还可以对其专门割地。对于很多芯片都有参考的晶体振荡器,这些晶振下方也不应走线,要铺铜隔离。 (1)时钟驱动器布局在PCB中心而非电路板外围,布局尽量靠近,走线圆滑、短,非直角、非T形。 (2)避免时钟之间、与信号之间的干扰,避免几种信号平行布线,必要时采用GND屏蔽层包裹隔离,不同时钟或信号之间间距尽量远。 (3) 时钟信号尽量不采用跨界分割平面。 (4) 如果是差分时钟线,一定要注意等长。 (5)时钟晶振: 时钟线先经过负载电容,再到达晶振,周围打孔,GND屏蔽. (6) 同源时钟: 时钟线的并联匹配电阻靠近负载芯片,串联电阻靠近时钟芯片或者CPU。 4、直角走线 直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。 其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。 直角走线的对信号的影响主要体现在三个方面: 一是拐角可以等效为传输线上的容性负载,减缓上升时间; 二是阻抗不连续会造成信号的反射; 三是直角尖端产生的EMI。 5、差分走线 差分信号在高速电路设计中的应用越来越广泛,电路中绝大多数的信号都采用了差分线结构。 使用差分线是为了抗干扰,从两个角度可以说明它的优点。 第一, 在相同电平幅度的信号中,差分线的峰峰值是单端线的两倍。 第二, 在相同的电路环境中,由于单端走线参考的是地平面,对于外界的干扰,受到的影响和地平面上受到的同一干扰表现差异很大,导致它在走线上的干扰和回流路径中的干扰无法相互抵消(单端走线电压基准为地平面);而差分线由于是平行等长走线,在相同的电路环境中,两条走线的耦合度很高,在受到同一干扰源时,两天线上的干扰程度接近,而差分线电压基准点为对应的另外一条走线,而不是地平面,对于共模干扰有较好的抑制能力。 差分线想要更高的抗干扰能力,来获得低的误码率,提升传输速率,但他需要比单端线对一条额外的线作为信号的回流线。所以,只有在追求更高的传输速率或者更强的抗干扰能力的设计中才会不惜增加传输线的数量来保证传输的速率和更强的抗干扰能力。 对于PCB工程师来说,在设计差分传输线的时候就要做好差分对内的等长以及阻抗的一致性(等间距)。 等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。至于平常大家所说的紧耦合还是松耦合,要视情况而定。差分对紧耦合真的比松耦合好吗? 6、蛇形线 蛇形线是Layout中经常使用的一类走线方式。其主要目的就是为了调节传输线延时,尤其是为了满足传输线的对内或者对间等长,或者是为了满足系统时序的要求而针对性的设计。 7、电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电源、地线的布线要认真对待,把电源、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 地线和电源线的PCB布线规则如下: 1、在电源、地线之间加上去耦电容。 2、尽量加宽电源线、地线宽度,最好使地线比电源线宽。 3、在高速数字电路的PCB中使用宽的地线组成一个回路,最好有一个完整的地平面来参考。模拟电路的地不能这样使用。 4、用大面积铜层作地线,在印制板上把没被用上的地方都与地相连接作为地线用,或是做成多层板,电源和地线各占用一层。 5、对于导通孔密集的区域,要注意避免孔在电源和地层的挖空区域相互连接,形成对平面层的分割,从而破坏平面层的完整性,并进而导致信号线在地层的回路面积增大。 地线回路规则: 地线环路尽量小,即信号线与其回路构成的环面积要尽可能小,环面积越小,对外的辐射越少,接收外界的干扰的噪声也越小。 去耦电容规则: A. 在PCB上增加必要的去耦电容,滤除电源上的干扰信号,使电源信号稳定。去耦电容的布局及电源的布线方式将直接影响到整个系统的稳定性,有时甚至关系到设计的成败。 B. 在PCB设计中,一般应该使电流先经过滤波电容滤波,再供器件使用。 C. 在高速电路设计中,能否正确地使用去耦电容,关系到整个板的稳定性。 8、数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外界只有一个结点,所以必须在PCB内部处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的,它们之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有在PCB上不共地的,这由系统设计来决定。 9、信号线布在电源或者地平面上 在多层PCB布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电源和地平面层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地平面的完整性。 10、设计规则检查(DRC) 布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查有如下几个方面: (1)线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。 (2)电源线和地线的宽度是否合适?电源与地平面之间是否紧耦合? (3)对于关键的信号线是否采取了最佳措施,如长度、加保护线、发送(TX)线及接收(RX)线的距离(有的要求分层布线)等等。 (4)模拟电路和数字电路部分,是否有各自独立的地线或者其如何连接。 (5)在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影响电装质量。 (6)多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。 11、检查3W、3H原则 3W原则就是指信号线与信号线之间的中心间距为线宽的3倍。 3H原则就是指信号线与信号线之间的中心间距为信号线到参考层距离的3倍。 无论是3W还是3H原则,都是为了减少信号线之间的串扰。尤其是高速信号线或者高频信号线之间。只要能满足3H或者3W的原则,那么串扰就会非常小。但是,对于小型化产品设计而言,已经很难满足3W或者3H原则。另外,串扰的主要来源已经不再只是传输线之间的影响。
ADC的深层的原理在这里就不再展开了,比较枯燥,如有需求的小伙伴,欢迎评论区留言,后期抽一章写一写! 单片机ADC采回来的数据不准,那今天主要针对实际项目中最有可能的几个原因展开,但主要还是从硬件的角度出发! (1)参考电压(VREF)不稳定 核桃见过很多产品基本VREF都是直接接VCC,也就是直接和单片机的工作电压共用一个电源,而在一些要求比较高的产品中,是需要单独给VREF供电的。 VREF直接和单片机的工作电源共用带来的问题如下: ①电源噪声直接耦合到VREF,直接影响采样数据 ②电源负载波动影响VREF的稳定性 ③地线干扰 ④温度漂移与电源温升影响 ⑤电源电压精度不足 这个原因的解决方案:使用低噪声,高稳定性的参考电源(实在压成本的可以使用TL431) (2)PCB布局与接地问题 在PCB布局中模拟采集电路最好与数字部分分割开,不能混在一起,因为数字部分很容易影响到模拟部分,模拟信号的走线应该远离高频数字信号,如CLK时钟信号等,且模拟地和数字地需做单点共地处理! (3)电源噪音干扰 如果板子中有使用DC-DC电源,那就需要留意一下开关电源(DC-DC)的电源纹波了,这个是会影响到ADC,建议使用LDO给ADC单独供电。 (4)ADC采样时间不足 其实这个很好理解,ADC采样需要时间对内部电容充电,若采样时间太短,电容没有充满电,导致电压不稳定。 解决方案:配置延长采样周期,也可以加外部缓冲电路。 (5)外部环境干扰 如果板子集成了其他感性器件的驱动,如电机或者继电器,也很有可能耦合到模拟信号线上。 布局走线时尽量远离感性器件,或者在信号线上添加磁珠或共模扼流圈抑制高频干扰。
N沟道与P沟道MOS管在结构、工作原理及应用上不同,N沟道适用于高速低噪环境,P沟道常用于低功率应用。 MOS管因为根据内部结构的不同,分为N沟道和P沟道两种类型,那么N沟道MOS管和P沟道MOS管的区别到底在哪里呢?今天,就让我们一起来了解一下。(这里讲解的N沟道MOS管和P沟道MOS管都是增强型)。 一、结构方面 N沟道MOS管是以一个掺入了少量正离子的P型半导体做为衬底,然后在衬底上制作两个高浓度的N +区作为源极和漏极。随后,在源极和漏极之间的绝缘层上制作金属层作为栅极。而P 沟道 MOS 管则是以一个掺入了少量负离子的N型半导体做为衬底,在衬底上制作两个 P + 区作为源极和漏极。随后,也是一样的,在源极和漏极之间的绝缘层上制作金属层作为栅极。 二、工作原理方面 虽然N沟道MOS管和P沟道MOS管在工作原理上基本一样,都是通过栅极电压来控制沟道的导电性,但是,它们在实现这一控制时,两者的具体结构差异导致了不同的导电行为。比如N沟道MOS管在栅极电压为正时导通(因为正电压吸引电子到沟道),而P沟道MOS管则是在栅极电压为负时导通(因为负电压排斥电子,使空穴占据沟道)。 三、应用领域 在应用领域方面,N沟道MOS管经常应用在低压、高速和低噪声环境的电路中,如放大器、模拟电路以及低功耗设备中。在电源管理电路中,比如DC-DC 转换器的开关管,也经常采用 N沟道MOS管来提高转换效率。而P沟道MOS管则是经常用在低功率应用上面,比如电源管理和模拟电路等一些需要低电压操作和低功率的场合。在逻辑电路的“下拉”功能中,也经常采用P沟道MOS管来实现逻辑信号的翻转和传输。 四、实际案例 为了更好地理解这两种MOS管在应用领域的区别,我们可以用一个智能家居系统中的电源管理模块来理解。在这个模块中,N沟道MOS管一般会被用作电源开关,因为它能够在短时间内快速响应控制信号,实现电源的精准开启和关闭,从而保障智能家居设备的低功耗运行。而P沟道MOS管则会被用作电源保护电路中的关键元件,因为它能够在检测到异常电压时迅速切断电路,从而保护整个系统不受到损害。 五、总结 N沟道MOS管和P沟道MOS管它们在结构、工作原理和应用领域中,都存在着显著差异。通过了解N沟道和P沟道的差异,能够有效的帮助我们更好地选择和应用这两种MOS管,以此,来满足不同电路的需求。
技巧一:使用LDO稳压器,从5V电源向3.3V系统标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V,就不能使用它们。压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO 系统的框图,标注了相应的电流。从图中可以看出, LDO 由四个主要部分组成: 1. 导通晶体管2. 带隙参考源3. 运算放大器4. 反馈电阻分压器在选择 LDO 时,重要的是要知道如何区分各种LDO。器件的静态电流、封装大小和型号是重要的器件参数。根据具体应用来确定各种参数,将会得到最优的设计。 LDO的静态电流IQ是器件空载工作时器件的接地电流 IGND。IGND 是 LDO 用来进行稳压的电流。当IOUT>>IQ 时, LDO 的效率可用输出电压除以输入电压来近似地得到。然而,轻载时,必须将 IQ 计入效率计算中。具有较低 IQ 的 LDO 其轻载效率较高。轻载效率的提高对于 LDO 性能有负面影响。静态电流较高的 LDO 对于线路和负载的突然变化有更快的响应。技巧二:采用齐纳二极管的低成本供电系统这里详细说明了一个采用齐纳二极管的低成本稳压器方案。 可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图 2-1 所示。在很多应用中,该电路可以替代 LDO 稳压器并具成本效益。但是,这种稳压器对负载敏感的程度要高于 LDO 稳压器。另外,它的能效较低,因为 R1 和 D1 始终有功耗。R1 限制流入D1 和 PICmicro® MCU的电流,从而使VDD 保持在允许范围内。由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑 R1 的值。R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。同时,在最小负载时——通常是 PICmicro MCU 复位时——VDD 不超过齐纳二极管的额定功率,也不超过 PICmicro MCU的最大 VDD。技巧三:采用3个整流二极管的更低成本供电系统 图 3-1 详细说明了一个采用 3 个整流二极管的更低成本稳压器方案。我们也可以把几个常规开关二极管串联起来,用其正向压降来降低进入的 PICmicro MCU 的电压。这甚至比齐纳二极管稳压器的成本还要低。这种设计的电流消耗通常要比使用齐纳二极管的电路低。所需二极管的数量根据所选用二极管的正向电压而变化。二极管 D1-D3 的电压降是流经这些二极管的电流的函数。连接 R1 是为了避免在负载最小时——通常是 PICmicro MCU 处于复位或休眠状态时——PICmicro MCU VDD 引脚上的电压超过PICmicro MCU 的最大 VDD 值。根据其他连接至VDD 的电路,可以提高R1 的阻值,甚至也可能完全不需要 R1。二极管 D1-D3 的选择依据是:在最大负载时——通常是 PICmicro MCU 运行且驱动其输出为高电平时——D1-D3 上的电压降要足够低从而能够满足 PICmicro MCU 的最低 VDD 要求。技巧四:使用开关稳压器,从5V电源向3.3V系统供电如图 4-1 所示,降压开关稳压器是一种基于电感的转换器,用来把输入电压源降低至幅值较低的输出电压。输出稳压是通过控制 MOSFET Q1 的导通(ON)时间来实现的。由于 MOSFET 要么处于低阻状态,要么处于高阻状态(分别为 ON 和OFF),因此高输入源电压能够高效率地转换成较低的输出电压。当 Q1 在这两种状态期间时,通过平衡电感的电压- 时间,可以建立输入和输出电压之间的关系。 对于 MOSFET Q1,有下式: 在选择电感的值时,使电感的最大峰 - 峰纹波电流等于最大负载电流的百分之十的电感值,是个很好的初始选择。 在选择输出电容值时,好的初值是:使 LC 滤波器特性阻抗等于负载电阻。这样在满载工作期间如果突然卸掉负载,电压过冲能处于可接受范围之内。 在选择二极管 D1 时,应选择额定电流足够大的元件,使之能够承受脉冲周期 (IL)放电期间的电感电流。 数字连接在连接两个工作电压不同的器件时,必须要知道其各自的输出、输入阈值。知道阈值之后,可根据应用的其他需求选择器件的连接方法。表 4-1 是本文档所使用的输出、输入阈值。在设计连接时,请务必参考制造商的数据手册以获得实际的阈值电平。 技巧五:3.3V →5V直接连接将 3.3V 输出连接到 5V 输入最简单、最理想的方法是直接连接。直接连接需要满足以下 2 点要求:• 3.3V输出的 VOH 大于 5V 输入的 VIH• 3.3V输出的 VOL 小于 5V 输入的 VIL能够使用这种方法的例子之一是将 3.3V LVCMOS输出连接到 5V TTL 输入。从表 4-1 中所给出的值可以清楚地看到上述要求均满足。3.3V LVCMOS 的 VOH (3.0V)大于5V TTL 的VIH (2.0V)且3.3V LVCMOS 的 VOL (0.5V)小于 5V TTL 的VIL (0.8V)。如果这两个要求得不到满足,连接两个部分时就需要额外的电路。可能的解决方案请参阅技巧 6、7、 8 和 13。技巧六:3.3V→5V使用MOSFET转换器如果 5V 输入的 VIH 比 3.3V CMOS 器件的 VOH 要高,则驱动任何这样的 5V 输入就需要额外的电路。图 6-1 所示为低成本的双元件解决方案。在选择 R1 的阻值时,需要考虑两个参数,即:输入的开关速度和 R1 上的电流消耗。当把输入从 0切换到 1 时,需要计入因 R1 形成的 RC 时间常数而导致的输入上升时间、 5V 输入的输入容抗以及电路板上任何的杂散电容。输入开关速度可通过下式计算: 由于输入容抗和电路板上的杂散电容是固定的,提高输入开关速度的惟一途径是降低 R1 的阻值。而降低 R1 阻值以获取更短的开关时间,却是以增大5V 输入为低电平时的电流消耗为代价的。通常,切换到 0 要比切换到 1 的速度快得多,因为 N 沟道 MOSFET 的导通电阻要远小于 R1。另外,在选择 N 沟道 FET 时,所选 FET 的VGS 应低于3.3V 输出的 VOH。 技巧七:3.3V→5V使用二极管补偿表 7-1 列出了 5V CMOS 的输入电压阈值、 3.3VLVTTL 和 LVCMOS 的输出驱动电压。 从上表看出, 5V CMOS 输入的高、低输入电压阈值均比 3.3V 输出的阈值高约一伏。因此,即使来自 3.3V 系统的输出能够被补偿,留给噪声或元件容差的余地也很小或者没有。我们需要的是能够补偿输出并加大高低输出电压差的电路。 输出电压规范确定后,就已经假定:高输出驱动的是输出和地之间的负载,而低输出驱动的是 3.3V和输出之间的负载。如果高电压阈值的负载实际上是在输出和 3.3V 之间的话,那么输出电压实际上要高得多,因为拉高输出的机制是负载电阻,而不是输出三极管。 19种5V怎么转3.3V技巧和电路 电路一点通 2022年03月19日 11:59 听全文 技巧一:使用LDO稳压器,从5V电源向3.3V系统供电 每天中午12:00 电路技术分享,记得来翻 免费资料下载 -戳进来-->电子技术下载资料精选-标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V,就不能使用它们。压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO 系统的框图,标注了相应的电流。从图中可以看出, LDO 由四个主要部分组成:1. 导通晶体管2. 带隙参考源3. 运算放大器4. 反馈电阻分压器在选择 LDO 时,重要的是要知道如何区分各种LDO。器件的静态电流、封装大小和型号是重要的器件参数。根据具体应用来确定各种参数,将会得到最优的设计。 LDO的静态电流IQ是器件空载工作时器件的接地电流 IGND。IGND 是 LDO 用来进行稳压的电流。当IOUT>>IQ 时, LDO 的效率可用输出电压除以输入电压来近似地得到。然而,轻载时,必须将 IQ 计入效率计算中。具有较低 IQ 的 LDO 其轻载效率较高。轻载效率的提高对于 LDO 性能有负面影响。静态电流较高的 LDO 对于线路和负载的突然变化有更快的响应。技巧二:采用齐纳二极管的低成本供电系统这里详细说明了一个采用齐纳二极管的低成本稳压器方案。 可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图 2-1 所示。在很多应用中,该电路可以替代 LDO 稳压器并具成本效益。但是,这种稳压器对负载敏感的程度要高于 LDO 稳压器。另外,它的能效较低,因为 R1 和 D1 始终有功耗。R1 限制流入D1 和 PICmicro® MCU的电流,从而使VDD 保持在允许范围内。由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑 R1 的值。R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。同时,在最小负载时——通常是 PICmicro MCU 复位时——VDD 不超过齐纳二极管的额定功率,也不超过 PICmicro MCU的最大 VDD。技巧三:采用3个整流二极管的更低成本供电系统 图 3-1 详细说明了一个采用 3 个整流二极管的更低成本稳压器方案。我们也可以把几个常规开关二极管串联起来,用其正向压降来降低进入的 PICmicro MCU 的电压。这甚至比齐纳二极管稳压器的成本还要低。这种设计的电流消耗通常要比使用齐纳二极管的电路低。所需二极管的数量根据所选用二极管的正向电压而变化。二极管 D1-D3 的电压降是流经这些二极管的电流的函数。连接 R1 是为了避免在负载最小时——通常是 PICmicro MCU 处于复位或休眠状态时——PICmicro MCU VDD 引脚上的电压超过PICmicro MCU 的最大 VDD 值。根据其他连接至VDD 的电路,可以提高R1 的阻值,甚至也可能完全不需要 R1。二极管 D1-D3 的选择依据是:在最大负载时——通常是 PICmicro MCU 运行且驱动其输出为高电平时——D1-D3 上的电压降要足够低从而能够满足 PICmicro MCU 的最低 VDD 要求。技巧四:使用开关稳压器,从5V电源向3.3V系统供电如图 4-1 所示,降压开关稳压器是一种基于电感的转换器,用来把输入电压源降低至幅值较低的输出电压。输出稳压是通过控制 MOSFET Q1 的导通(ON)时间来实现的。由于 MOSFET 要么处于低阻状态,要么处于高阻状态(分别为 ON 和OFF),因此高输入源电压能够高效率地转换成较低的输出电压。当 Q1 在这两种状态期间时,通过平衡电感的电压- 时间,可以建立输入和输出电压之间的关系。 对于 MOSFET Q1,有下式: 在选择电感的值时,使电感的最大峰 - 峰纹波电流等于最大负载电流的百分之十的电感值,是个很好的初始选择。 在选择输出电容值时,好的初值是:使 LC 滤波器特性阻抗等于负载电阻。这样在满载工作期间如果突然卸掉负载,电压过冲能处于可接受范围之内。 在选择二极管 D1 时,应选择额定电流足够大的元件,使之能够承受脉冲周期 (IL)放电期间的电感电流。 数字连接在连接两个工作电压不同的器件时,必须要知道其各自的输出、输入阈值。知道阈值之后,可根据应用的其他需求选择器件的连接方法。表 4-1 是本文档所使用的输出、输入阈值。在设计连接时,请务必参考制造商的数据手册以获得实际的阈值电平。 技巧五:3.3V →5V直接连接将 3.3V 输出连接到 5V 输入最简单、最理想的方法是直接连接。直接连接需要满足以下 2 点要求:• 3.3V输出的 VOH 大于 5V 输入的 VIH• 3.3V输出的 VOL 小于 5V 输入的 VIL能够使用这种方法的例子之一是将 3.3V LVCMOS输出连接到 5V TTL 输入。从表 4-1 中所给出的值可以清楚地看到上述要求均满足。3.3V LVCMOS 的 VOH (3.0V)大于5V TTL 的VIH (2.0V)且3.3V LVCMOS 的 VOL (0.5V)小于 5V TTL 的VIL (0.8V)。如果这两个要求得不到满足,连接两个部分时就需要额外的电路。可能的解决方案请参阅技巧 6、7、 8 和 13。技巧六:3.3V→5V使用MOSFET转换器如果 5V 输入的 VIH 比 3.3V CMOS 器件的 VOH 要高,则驱动任何这样的 5V 输入就需要额外的电路。图 6-1 所示为低成本的双元件解决方案。在选择 R1 的阻值时,需要考虑两个参数,即:输入的开关速度和 R1 上的电流消耗。当把输入从 0切换到 1 时,需要计入因 R1 形成的 RC 时间常数而导致的输入上升时间、 5V 输入的输入容抗以及电路板上任何的杂散电容。输入开关速度可通过下式计算: 由于输入容抗和电路板上的杂散电容是固定的,提高输入开关速度的惟一途径是降低 R1 的阻值。而降低 R1 阻值以获取更短的开关时间,却是以增大5V 输入为低电平时的电流消耗为代价的。通常,切换到 0 要比切换到 1 的速度快得多,因为 N 沟道 MOSFET 的导通电阻要远小于 R1。另外,在选择 N 沟道 FET 时,所选 FET 的VGS 应低于3.3V 输出的 VOH。 技巧七:3.3V→5V使用二极管补偿表 7-1 列出了 5V CMOS 的输入电压阈值、 3.3VLVTTL 和 LVCMOS 的输出驱动电压。 从上表看出, 5V CMOS 输入的高、低输入电压阈值均比 3.3V 输出的阈值高约一伏。因此,即使来自 3.3V 系统的输出能够被补偿,留给噪声或元件容差的余地也很小或者没有。我们需要的是能够补偿输出并加大高低输出电压差的电路。 输出电压规范确定后,就已经假定:高输出驱动的是输出和地之间的负载,而低输出驱动的是 3.3V和输出之间的负载。如果高电压阈值的负载实际上是在输出和 3.3V 之间的话,那么输出电压实际上要高得多,因为拉高输出的机制是负载电阻,而不是输出三极管。如果我们设计一个二极管补偿电路 (见图 7-1),二极管 D1 的正向电压 (典型值 0.7V)将会使输出低电压上升,在 5V CMOS 输入得到 1.1V 至1.2V 的低电压。它安全地处于 5V CMOS 输入的低输入电压阈值之下。输出高电压由上拉电阻和连至3.3V 电源的二极管 D2 确定。这使得输出高电压大约比 3.3V 电源高 0.7V,也就是 4.0 到 4.1V,很安全地在 5V CMOS 输入阈值 (3.5V)之上。注:为了使电路工作正常,上拉电阻必须显著小于 5V CMOS 输入的输入电阻,从而避免由于输入端电阻分压器效应而导致的输出电压下降。上拉电阻还必须足够大,从而确保加载在 3.3V 输出上的电流在器件规范之内。技巧八:3.3V→5V使用电压比较器比较器的基本工作如下:• 反相 (-)输入电压大于同相 (+)输入电压时,比较器输出切换到 Vss。• 同相 (+)输入端电压大于反相 (-)输入电压时,比较器输出为高电平。为了保持 3.3V 输出的极性, 3.3V 输出必须连接到比较器的同相输入端。比较器的反相输入连接到由 R1 和 R2 确定的参考电压处,如图 8-1 所示。 计算 R1 和 R2R1 和 R2 之比取决于输入信号的逻辑电平。对于3.3V 输出,反相电压应该置于VOL 与VOH之间的中点电压。对于 LVCMOS 输出,中点电压为: 如果 R1 和 R2 的逻辑电平关系如下, 若 R2 取值为 1K,则 R1 为 1.8K。经过适当连接后的运算放大器可以用作比较器,以将 3.3V 输入信号转换为 5V 输出信号。这是利用了比较器的特性,即:根据 “反相”输入与 “同相”输入之间的压差幅值,比较器迫使输出为高(VDD)或低 (Vss)电平。注:要使运算放大器在 5V 供电下正常工作,输出必须具有轨到轨驱动能力。 技巧九:5V→3.3V直接连接通常 5V 输出的 VOH 为 4.7 伏, VOL 为 0.4 伏;而通常 3.3V LVCMOS 输入的 VIH 为 0.7 x VDD, VIL为 0.2 x VDD。当 5V 输出驱动为低时,不会有问题,因为 0.4 伏的输出小于 0.8 伏的输入阈值。当 5V 输出为高时, 4.7 伏的 VOH 大于 2.1 伏 VIH,所以,我们可以直接把两个引脚相连,不会有冲突,前提是3.3V CMOS 输出能够耐受 5 伏电压。 如果 3.3V CMOS 输入不能耐受 5 伏电压,则将出现问题,因为超出了输入的最大电压规范。可能的解决方案请参见技巧 10-13。技巧十:5V→3.3V使用二极管钳位很多厂商都使用钳位二极管来保护器件的 I/O 引脚,防止引脚上的电压超过最大允许电压规范。钳位二极管使引脚上的电压不会低于 Vss 超过一个二极管压降,也不会高于 VDD 超过一个二极管压降。要使用钳位二极管来保护输入,仍然要关注流经钳位二极管的电流。流经钳位二极管的电流应该始终比较小 (在微安数量级上)。如果流经钳位二极管的电流过大,就存在部件闭锁的危险。由于5V 输出的源电阻通常在 10Ω 左右,因此仍需串联一个电阻,限制流经钳位二极管的电流,如图 10-1所示。使用串联电阻的后果是降低了输入开关的速度,因为引脚 (CL)上构成了 RC 时间常数。 如果没有钳位二极管,可以在电流中添加一个外部二极管,如图 10-2 所示。 技巧十一:一5V→3.3V有源钳位使用二极管钳位有一个问题,即它将向 3.3V 电源注入电流。在具有高电流 5V 输出且轻载 3.3V 电源轨的设计中,这种电流注入可能会使 3.3V 电源电压超过 3.3V。为了避免这个问题,可以用一个三极管来替代,三极管使过量的输出驱动电流流向地,而不是 3.3V 电源。设计的电路如图 11-1 所示。 Q1的基极-发射极结所起的作用与二极管钳位电路中的二极管相同。区别在于,发射极电流只有百分之几流出基极进入 3.3V 轨,绝大部分电流都流向集电极,再从集电极无害地流入地。基极电流与集电极电流之比,由晶体管的电流增益决定,通常为10-400,取决于所使用的晶体管。技巧十二:5V→3.3V电阻分压器可以使用简单的电阻分压器将 5V 器件的输出降低到适用于 3.3V 器件输入的电平。这种接口的等效电路如图 12-1 所示。 通常,源电阻 RS 非常小 (小于 10Ω),如果选择的 R1 远大于RS 的话,那么可以忽略 RS 对 R1 的影响。在接收端,负载电阻 RL 非常大 (大于500 kΩ),如果选择的R2远小于RL的话,那么可以忽略 RL 对 R2 的影响。在功耗和瞬态时间之间存在取舍权衡。为了使接口电流的功耗需求最小,串联电阻 R1 和 R2 应尽可能大。但是,负载电容 (由杂散电容 CS 和 3.3V 器件的输入电容 CL 合成)可能会对输入信号的上升和下降时间产生不利影响。如果 R1 和 R2 过大,上升和下降时间可能会过长而无法接受。如果忽略 RS 和 RL 的影响,则确定 R1 和 R2 的式子由下面的公式 12-1 给出。 公式 12-2 给出了确定上升和下降时间的公式。为便于电路分析,使用戴维宁等效计算来确定外加电压 VA 和串联电阻R。戴维宁等效计算定义为开路电压除以短路电流。根据公式 12-2 所施加的限制,对于图 12-1 所示电路,确定的戴维宁等效电阻 R 应为 0.66*R1,戴维宁等效电压 VA 应为0.66*VS。 例如,假设有下列条件存在:• 杂散电容 = 30 pF• 负载电容 = 5 pF• 从 0.3V 至 3V 的最大上升时间 ≤ 1 μs• 外加源电压 Vs = 5V确定最大电阻的计算如公式 12-3 所示。 技巧十三:3.3V→5V电平转换器尽管电平转换可以分立地进行,但通常使用集成解决方案较受欢迎。电平转换器的使用范围比较广泛:有单向和双向配置、不同的电压转换和不同的速度,供用户选择最佳的解决方案。器件之间的板级通讯 (例如, MCU 至外设)通过 SPI 或 I2C™ 来进行,这是最常见的。对于SPI,使用单向电平转换器比较合适;对于 I2C,就需要使用双向解决方案。下面的图 13-1 显示了这两种解决方案。 模拟3.3V 至 5V 接口的最后一项挑战是如何转换模拟信号,使之跨越电源障碍。低电平信号可能不需要外部电路,但在 3.3V 与 5V 之间传送信号的系统则会受到电源变化的影响。例如,在 3.3V 系统中,ADC转换1V峰值的模拟信号,其分辨率要比5V系统中 ADC 转换的高,这是因为在 3.3V ADC 中,ADC 量程中更多的部分用于转换。但另一方面,3.3V 系统中相对较高的信号幅值,与系统较低的共模电压限制可能会发生冲突。 19种5V怎么转3.3V技巧和电路 电路一点通 2022年03月19日 11:59 听全文 技巧一:使用LDO稳压器,从5V电源向3.3V系统供电 每天中午12:00 电路技术分享,记得来翻 免费资料下载 -戳进来-->电子技术下载资料精选-标准三端线性稳压器的压差通常是 2.0-3.0V。要把 5V 可靠地转换为 3.3V,就不能使用它们。压差为几百个毫伏的低压降 (Low Dropout, LDO)稳压器,是此类应用的理想选择。图 1-1 是基本LDO 系统的框图,标注了相应的电流。从图中可以看出, LDO 由四个主要部分组成:1. 导通晶体管2. 带隙参考源3. 运算放大器4. 反馈电阻分压器在选择 LDO 时,重要的是要知道如何区分各种LDO。器件的静态电流、封装大小和型号是重要的器件参数。根据具体应用来确定各种参数,将会得到最优的设计。 LDO的静态电流IQ是器件空载工作时器件的接地电流 IGND。IGND 是 LDO 用来进行稳压的电流。当IOUT>>IQ 时, LDO 的效率可用输出电压除以输入电压来近似地得到。然而,轻载时,必须将 IQ 计入效率计算中。具有较低 IQ 的 LDO 其轻载效率较高。轻载效率的提高对于 LDO 性能有负面影响。静态电流较高的 LDO 对于线路和负载的突然变化有更快的响应。技巧二:采用齐纳二极管的低成本供电系统这里详细说明了一个采用齐纳二极管的低成本稳压器方案。 可以用齐纳二极管和电阻做成简单的低成本 3.3V稳压器,如图 2-1 所示。在很多应用中,该电路可以替代 LDO 稳压器并具成本效益。但是,这种稳压器对负载敏感的程度要高于 LDO 稳压器。另外,它的能效较低,因为 R1 和 D1 始终有功耗。R1 限制流入D1 和 PICmicro® MCU的电流,从而使VDD 保持在允许范围内。由于流经齐纳二极管的电流变化时,二极管的反向电压也将发生改变,所以需要仔细考虑 R1 的值。R1 的选择依据是:在最大负载时——通常是在PICmicro MCU 运行且驱动其输出为高电平时——R1上的电压降要足够低从而使PICmicro MCU有足以维持工作所需的电压。同时,在最小负载时——通常是 PICmicro MCU 复位时——VDD 不超过齐纳二极管的额定功率,也不超过 PICmicro MCU的最大 VDD。技巧三:采用3个整流二极管的更低成本供电系统 图 3-1 详细说明了一个采用 3 个整流二极管的更低成本稳压器方案。我们也可以把几个常规开关二极管串联起来,用其正向压降来降低进入的 PICmicro MCU 的电压。这甚至比齐纳二极管稳压器的成本还要低。这种设计的电流消耗通常要比使用齐纳二极管的电路低。所需二极管的数量根据所选用二极管的正向电压而变化。二极管 D1-D3 的电压降是流经这些二极管的电流的函数。连接 R1 是为了避免在负载最小时——通常是 PICmicro MCU 处于复位或休眠状态时——PICmicro MCU VDD 引脚上的电压超过PICmicro MCU 的最大 VDD 值。根据其他连接至VDD 的电路,可以提高R1 的阻值,甚至也可能完全不需要 R1。二极管 D1-D3 的选择依据是:在最大负载时——通常是 PICmicro MCU 运行且驱动其输出为高电平时——D1-D3 上的电压降要足够低从而能够满足 PICmicro MCU 的最低 VDD 要求。技巧四:使用开关稳压器,从5V电源向3.3V系统供电如图 4-1 所示,降压开关稳压器是一种基于电感的转换器,用来把输入电压源降低至幅值较低的输出电压。输出稳压是通过控制 MOSFET Q1 的导通(ON)时间来实现的。由于 MOSFET 要么处于低阻状态,要么处于高阻状态(分别为 ON 和OFF),因此高输入源电压能够高效率地转换成较低的输出电压。当 Q1 在这两种状态期间时,通过平衡电感的电压- 时间,可以建立输入和输出电压之间的关系。 对于 MOSFET Q1,有下式: 在选择电感的值时,使电感的最大峰 - 峰纹波电流等于最大负载电流的百分之十的电感值,是个很好的初始选择。 在选择输出电容值时,好的初值是:使 LC 滤波器特性阻抗等于负载电阻。这样在满载工作期间如果突然卸掉负载,电压过冲能处于可接受范围之内。 在选择二极管 D1 时,应选择额定电流足够大的元件,使之能够承受脉冲周期 (IL)放电期间的电感电流。 数字连接在连接两个工作电压不同的器件时,必须要知道其各自的输出、输入阈值。知道阈值之后,可根据应用的其他需求选择器件的连接方法。表 4-1 是本文档所使用的输出、输入阈值。在设计连接时,请务必参考制造商的数据手册以获得实际的阈值电平。 技巧五:3.3V →5V直接连接将 3.3V 输出连接到 5V 输入最简单、最理想的方法是直接连接。直接连接需要满足以下 2 点要求:• 3.3V输出的 VOH 大于 5V 输入的 VIH• 3.3V输出的 VOL 小于 5V 输入的 VIL能够使用这种方法的例子之一是将 3.3V LVCMOS输出连接到 5V TTL 输入。从表 4-1 中所给出的值可以清楚地看到上述要求均满足。3.3V LVCMOS 的 VOH (3.0V)大于5V TTL 的VIH (2.0V)且3.3V LVCMOS 的 VOL (0.5V)小于 5V TTL 的VIL (0.8V)。如果这两个要求得不到满足,连接两个部分时就需要额外的电路。可能的解决方案请参阅技巧 6、7、 8 和 13。技巧六:3.3V→5V使用MOSFET转换器如果 5V 输入的 VIH 比 3.3V CMOS 器件的 VOH 要高,则驱动任何这样的 5V 输入就需要额外的电路。图 6-1 所示为低成本的双元件解决方案。在选择 R1 的阻值时,需要考虑两个参数,即:输入的开关速度和 R1 上的电流消耗。当把输入从 0切换到 1 时,需要计入因 R1 形成的 RC 时间常数而导致的输入上升时间、 5V 输入的输入容抗以及电路板上任何的杂散电容。输入开关速度可通过下式计算: 由于输入容抗和电路板上的杂散电容是固定的,提高输入开关速度的惟一途径是降低 R1 的阻值。而降低 R1 阻值以获取更短的开关时间,却是以增大5V 输入为低电平时的电流消耗为代价的。通常,切换到 0 要比切换到 1 的速度快得多,因为 N 沟道 MOSFET 的导通电阻要远小于 R1。另外,在选择 N 沟道 FET 时,所选 FET 的VGS 应低于3.3V 输出的 VOH。 技巧七:3.3V→5V使用二极管补偿表 7-1 列出了 5V CMOS 的输入电压阈值、 3.3VLVTTL 和 LVCMOS 的输出驱动电压。 从上表看出, 5V CMOS 输入的高、低输入电压阈值均比 3.3V 输出的阈值高约一伏。因此,即使来自 3.3V 系统的输出能够被补偿,留给噪声或元件容差的余地也很小或者没有。我们需要的是能够补偿输出并加大高低输出电压差的电路。 输出电压规范确定后,就已经假定:高输出驱动的是输出和地之间的负载,而低输出驱动的是 3.3V和输出之间的负载。如果高电压阈值的负载实际上是在输出和 3.3V 之间的话,那么输出电压实际上要高得多,因为拉高输出的机制是负载电阻,而不是输出三极管。如果我们设计一个二极管补偿电路 (见图 7-1),二极管 D1 的正向电压 (典型值 0.7V)将会使输出低电压上升,在 5V CMOS 输入得到 1.1V 至1.2V 的低电压。它安全地处于 5V CMOS 输入的低输入电压阈值之下。输出高电压由上拉电阻和连至3.3V 电源的二极管 D2 确定。这使得输出高电压大约比 3.3V 电源高 0.7V,也就是 4.0 到 4.1V,很安全地在 5V CMOS 输入阈值 (3.5V)之上。注:为了使电路工作正常,上拉电阻必须显著小于 5V CMOS 输入的输入电阻,从而避免由于输入端电阻分压器效应而导致的输出电压下降。上拉电阻还必须足够大,从而确保加载在 3.3V 输出上的电流在器件规范之内。技巧八:3.3V→5V使用电压比较器比较器的基本工作如下:• 反相 (-)输入电压大于同相 (+)输入电压时,比较器输出切换到 Vss。• 同相 (+)输入端电压大于反相 (-)输入电压时,比较器输出为高电平。为了保持 3.3V 输出的极性, 3.3V 输出必须连接到比较器的同相输入端。比较器的反相输入连接到由 R1 和 R2 确定的参考电压处,如图 8-1 所示。 计算 R1 和 R2R1 和 R2 之比取决于输入信号的逻辑电平。对于3.3V 输出,反相电压应该置于VOL 与VOH之间的中点电压。对于 LVCMOS 输出,中点电压为: 如果 R1 和 R2 的逻辑电平关系如下, 若 R2 取值为 1K,则 R1 为 1.8K。经过适当连接后的运算放大器可以用作比较器,以将 3.3V 输入信号转换为 5V 输出信号。这是利用了比较器的特性,即:根据 “反相”输入与 “同相”输入之间的压差幅值,比较器迫使输出为高(VDD)或低 (Vss)电平。注:要使运算放大器在 5V 供电下正常工作,输出必须具有轨到轨驱动能力。 技巧九:5V→3.3V直接连接通常 5V 输出的 VOH 为 4.7 伏, VOL 为 0.4 伏;而通常 3.3V LVCMOS 输入的 VIH 为 0.7 x VDD, VIL为 0.2 x VDD。当 5V 输出驱动为低时,不会有问题,因为 0.4 伏的输出小于 0.8 伏的输入阈值。当 5V 输出为高时, 4.7 伏的 VOH 大于 2.1 伏 VIH,所以,我们可以直接把两个引脚相连,不会有冲突,前提是3.3V CMOS 输出能够耐受 5 伏电压。 如果 3.3V CMOS 输入不能耐受 5 伏电压,则将出现问题,因为超出了输入的最大电压规范。可能的解决方案请参见技巧 10-13。技巧十:5V→3.3V使用二极管钳位很多厂商都使用钳位二极管来保护器件的 I/O 引脚,防止引脚上的电压超过最大允许电压规范。钳位二极管使引脚上的电压不会低于 Vss 超过一个二极管压降,也不会高于 VDD 超过一个二极管压降。要使用钳位二极管来保护输入,仍然要关注流经钳位二极管的电流。流经钳位二极管的电流应该始终比较小 (在微安数量级上)。如果流经钳位二极管的电流过大,就存在部件闭锁的危险。由于5V 输出的源电阻通常在 10Ω 左右,因此仍需串联一个电阻,限制流经钳位二极管的电流,如图 10-1所示。使用串联电阻的后果是降低了输入开关的速度,因为引脚 (CL)上构成了 RC 时间常数。 如果没有钳位二极管,可以在电流中添加一个外部二极管,如图 10-2 所示。 技巧十一:一5V→3.3V有源钳位使用二极管钳位有一个问题,即它将向 3.3V 电源注入电流。在具有高电流 5V 输出且轻载 3.3V 电源轨的设计中,这种电流注入可能会使 3.3V 电源电压超过 3.3V。为了避免这个问题,可以用一个三极管来替代,三极管使过量的输出驱动电流流向地,而不是 3.3V 电源。设计的电路如图 11-1 所示。 Q1的基极-发射极结所起的作用与二极管钳位电路中的二极管相同。区别在于,发射极电流只有百分之几流出基极进入 3.3V 轨,绝大部分电流都流向集电极,再从集电极无害地流入地。基极电流与集电极电流之比,由晶体管的电流增益决定,通常为10-400,取决于所使用的晶体管。技巧十二:5V→3.3V电阻分压器可以使用简单的电阻分压器将 5V 器件的输出降低到适用于 3.3V 器件输入的电平。这种接口的等效电路如图 12-1 所示。 通常,源电阻 RS 非常小 (小于 10Ω),如果选择的 R1 远大于RS 的话,那么可以忽略 RS 对 R1 的影响。在接收端,负载电阻 RL 非常大 (大于500 kΩ),如果选择的R2远小于RL的话,那么可以忽略 RL 对 R2 的影响。在功耗和瞬态时间之间存在取舍权衡。为了使接口电流的功耗需求最小,串联电阻 R1 和 R2 应尽可能大。但是,负载电容 (由杂散电容 CS 和 3.3V 器件的输入电容 CL 合成)可能会对输入信号的上升和下降时间产生不利影响。如果 R1 和 R2 过大,上升和下降时间可能会过长而无法接受。如果忽略 RS 和 RL 的影响,则确定 R1 和 R2 的式子由下面的公式 12-1 给出。 公式 12-2 给出了确定上升和下降时间的公式。为便于电路分析,使用戴维宁等效计算来确定外加电压 VA 和串联电阻R。戴维宁等效计算定义为开路电压除以短路电流。根据公式 12-2 所施加的限制,对于图 12-1 所示电路,确定的戴维宁等效电阻 R 应为 0.66*R1,戴维宁等效电压 VA 应为0.66*VS。 例如,假设有下列条件存在:• 杂散电容 = 30 pF• 负载电容 = 5 pF• 从 0.3V 至 3V 的最大上升时间 ≤ 1 μs• 外加源电压 Vs = 5V确定最大电阻的计算如公式 12-3 所示。 技巧十三:3.3V→5V电平转换器尽管电平转换可以分立地进行,但通常使用集成解决方案较受欢迎。电平转换器的使用范围比较广泛:有单向和双向配置、不同的电压转换和不同的速度,供用户选择最佳的解决方案。器件之间的板级通讯 (例如, MCU 至外设)通过 SPI 或 I2C™ 来进行,这是最常见的。对于SPI,使用单向电平转换器比较合适;对于 I2C,就需要使用双向解决方案。下面的图 13-1 显示了这两种解决方案。 模拟3.3V 至 5V 接口的最后一项挑战是如何转换模拟信号,使之跨越电源障碍。低电平信号可能不需要外部电路,但在 3.3V 与 5V 之间传送信号的系统则会受到电源变化的影响。例如,在 3.3V 系统中,ADC转换1V峰值的模拟信号,其分辨率要比5V系统中 ADC 转换的高,这是因为在 3.3V ADC 中,ADC 量程中更多的部分用于转换。但另一方面,3.3V 系统中相对较高的信号幅值,与系统较低的共模电压限制可能会发生冲突。因此,为了补偿上述差异,可能需要某种接口电路。本节将讨论接口电路,以帮助缓和信号在不同电源之间转换的问题。技巧十四:3.3V→5V模拟增益模块从 3.3V 电源连接至 5V 时,需要提升模拟电压。33 kΩ 和 17kΩ 电阻设定了运放的增益,从而在两端均使用满量程。11 kΩ 电阻限制了流回 3.3V 电路的电流。 技巧十五:3.3V→5V模拟补偿模块该模块用于补偿 3.3V 转换到 5V 的模拟电压。下面是将 3.3V 电源供电的模拟电压转换为由 5V电源供电。右上方的 147 kΩ、 30.1 kΩ 电阻以及+5V 电源,等效于串联了 25 kΩ 电阻的 0.85V 电压源。这个等效的 25 kΩ 电阻、三个 25 kΩ 电阻以及运放构成了增益为 1 V/V 的差动放大器。0.85V等效电压源将出现在输入端的任何信号向上平移相同的幅度;以 3.3V/2 = 1.65V 为中心的信号将同时以 5.0V/2 = 2.50V 为中心。左上方的电阻限制了来自 5V 电路的电流。 技巧十六:5V→3.3V有源模拟衰减器此技巧使用运算放大器衰减从 5V 至 3.3V 系统的信号幅值。要将 5V 模拟信号转换为 3.3V 模拟信号,最简单的方法是使用 R1:R2 比值为 1.7:3.3 的电阻分压器。然而,这种方法存在一些问题。1)衰减器可能会接至容性负载,构成不期望得到的低通滤波器。2)衰减器电路可能需要从高阻抗源驱动低阻抗负载。无论是哪种情形,都需要运算放大器用以缓冲信号。所需的运放电路是单位增益跟随器 (见图 16-1)。 电路输出电压与加在输入的电压相同。为了把 5V 信号转换为较低的 3V 信号,我们只要加上电阻衰减器即可。 如果电阻分压器位于单位增益跟随器之前,那么将为 3.3V 电路提供最低的阻抗。此外,运放可以从3.3V 供电,这将节省一些功耗。如果选择的 X 非常大的话, 5V 侧的功耗可以最大限度地减小。如果衰减器位于单位增益跟随器之后,那么对 5V源而言就有最高的阻抗。运放必须从 5V 供电,3V 侧的阻抗将取决于 R1||R2 的值。技巧十七:5V→3.3V模拟限幅器在将 5V 信号传送给 3.3V 系统时,有时可以将衰减用作增益。如果期望的信号小于 5V,那么把信号直接送入 3.3V ADC 将产生较大的转换值。当信号接近 5V 时就会出现危险。所以,需要控制电压越限的方法,同时不影响正常范围中的电压。这里将讨论三种实现方法。1. 使用二极管,钳位过电压至 3.3V 供电系统。2. 使用齐纳二极管,把电压钳位至任何期望的电压限。3. 使用带二极管的运算放大器,进行精确钳位。进行过电压钳位的最简单的方法,与将 5V 数字信号连接至 3.3V 数字信号的简单方法完全相同。使用电阻和二极管,使过量电流流入 3.3V 电源。选用的电阻值必须能够保护二极管和 3.3V 电源,同时还不会对模拟性能造成负面影响。如果 3.3V 电源的阻抗太低,那么这种类型的钳位可能致使3.3V 电源电压上升。即使 3.3V 电源有很好的低阻抗,当二极管导通时,以及在频率足够高的情况下,当二极管没有导通时 (由于有跨越二极管的寄生电容),此类钳位都将使输入信号向 3.3V 电源施加噪声。 为了防止输入信号对电源造成影响,或者为了使输入应对较大的瞬态电流时更为从容,对前述方法稍加变化,改用齐纳二极管。齐纳二极管的速度通常要比第一个电路中所使用的快速信号二极管慢。不过,齐纳钳位一般来说更为结实,钳位时不依赖于电源的特性参数。钳位的大小取决于流经二极管的电流。这由 R1 的值决定。如果 VIN 源的输出阻抗足够大的话,也可不需要 R1。 如果需要不依赖于电源的更为精确的过电压钳位,可以使用运放来得到精密二极管。电路如图 17-3所示。运放补偿了二极管的正向压降,使得电压正好被钳位在运放的同相输入端电源电压上。如果运放是轨到轨的话,可以用 3.3V 供电。 由于钳位是通过运放来进行的,不会影响到电源。运放不能改善低电压电路中出现的阻抗,阻抗仍为R1 加上源电路阻抗。技巧十八:驱动双极型晶体管在驱动双极型晶体管时,基极 “驱动”电流和正向电流增益 (Β/hFE)将决定晶体管将吸纳多少电流。如果晶体管被单片机 I/O 端口驱动,使用端口电压和端口电流上限 (典型值 20 mA)来计算基极驱动电流。如果使用的是 3.3V 技术,应改用阻值较小的基极电流限流电阻,以确保有足够的基极驱动电流使晶体管饱和。 RBASE的值取决于单片机电源电压。公式18-1 说明了如何计算 RBASE。 如果将双极型晶体管用作开关,开启或关闭由单片机 I/O 端口引脚控制的负载,应使用最小的 hFE规范和裕度,以确保器件完全饱和。 3V 技术示例: 对于这两个示例,提高基极电流留出裕度是不错的做法。将 1mA 的基极电流驱动至 2 mA 能确保饱和,但代价是提高了输入功耗。技巧十九:驱动N沟道MOSFET晶体管在选择与 3.3V 单片机配合使用的外部 N 沟道MOSFET 时,一定要小心。MOSFET 栅极阈值电压表明了器件完全饱和的能力。对于 3.3V 应用,所选 MOSFET 的额定导通电阻应针对 3V 或更小的栅极驱动电压。例如,对于具有 3.3V 驱动的100 mA负载,额定漏极电流为250 μA的FET在栅极 - 源极施加 1V 电压时,不一定能提供满意的结果。在从 5V 转换到 3V 技术时,应仔细检查栅极- 源极阈值和导通电阻特性参数,如图 19-1所示。稍微减少栅极驱动电压,可以显著减小漏电流。 对于 MOSFET,低阈值器件较为常见,其漏-源电压额定值低于 30V。漏-源额定电压大于 30V的 MOSFET,通常具有更高的阈值电压 (VT)。 如表 19-1 所示,此 30V N 沟道 MOSFET 开关的阈值电压是 0.6V。栅极施加 2.8V 的电压时,此MOSFET 的额定电阻是 35 mΩ,因此,它非常适用于 3.3V 应用。 对于 IRF7201 数据手册中的规范,栅极阈值电压最小值规定为 1.0V。这并不意味着器件可以用来在1.0V 栅 - 源电压时开关电流,因为对于低于 4.5V 的VGS (th),没有说明规范。对于需要低开关电阻的 3.3V 驱动的应用,不建议使用 IRF7201,但它可以用于 5V 驱动应用。
作者:贸泽电子Mark Patrick 无刷直流(BLDC)电机已经广泛应用于家用电器、工业设备和汽车等领域。相对于传统有刷电机,虽然无刷直流电机能够提供更可靠和免维护的替代方案,但却需要更复杂的电子...
全球都在致力降低功耗,且势头愈来愈烈。许多国家/地区都要求家用电器(如图 1 所示)满足相关组织(如中国标准化研究院 (CNIS)、美国能源之星和德国蓝天使)制定的效率标准。为了满足这些标准,越来越多...
一、分压式偏置放大电路 放大电路静态工作点不稳定的原因: (1)温度影响(2)电源电压波动(3)元件参数改变 什么是分压式偏置电路 分压式偏置电路是一种更为复杂的电路,它使用两个电阻器将电源电压分压,然后将分压后的电压加到放大器的基极上,这种电路的优点是稳定向好 ????查看更多目录???? 分压式电路组成 Rb1是上偏置电阻,Rb2是下偏置电阻 电源电压经Rb1、Rb2串联分压后为三极管提供基极电压VBQ Re起到稳定静态电流的作用,Ce是Re的交流信号旁路电容 电路分析 B点的电流方程为:I1=I2+Ibq 温度t升高—>ICQ增大—>IEQ增大—>VEQ增大—>VBEQ降低—>IB减小—>ICQ下降 估算静态工作点 二、多级放大电路 什么是多级放大电路 单级放大电路的电压放大倍数一般可以达到几十倍,然而,在许多场合,这样的放大倍数是不够用的,常需要把若干个单管放大电路串接起来,组成多级放大器,把信号经过多次放大,从而得到所需的放大倍数 多级放大器耦合 多级放大器中每个单管放大电路称为“级”,级与级之间的连接称为耦合 常用的耦合方式有以下三种:阻容耦合、变压器耦合、直接耦合 级间耦合必须满足以下两个 基本要求: (1)保证前级输出信号能顺利地传输到后级,并尽可能地减小功率损耗和波形失真 (2)耦合电路对前、后级放大电路的静态工作点没有影响 阻容耦合基本电路与放大倍数 变压器耦合多级放大电路 利用变压器初次级线圈之间具有“隔直流耦合交流”的作用,使各级放大器的工作点相互独立,而交流信号能顺利输送到下一级,就称为变压器耦合 利用变压器耦合可以实现阻抗匹配或阻抗变换 直接耦合多级放大电路 直接耦合放大器前后级之间没有隔直流的耦合电容或变压器,因此适用于放大直流信号或变化极其缓慢的交流信号 三、差动放大电路 什么是差分放大电路 差分放大电路又称为差动放大电路,当该电路的两个输入端的电压有差别时,输出电压才有变动,因此称为差动 差分放大电路是模拟集成运算放大器输入级所采用的的电路形式,差分放大电路是由对称的两个基本放大电路,通过射极公共电阻耦合构成的,对称的意思就是说两个三极管的特性都是一致的,电路参数一致,同时具有两个输入信号 差模信号、共模信号、 从一个系统的一对输入端看,若信号的极性相反(同样,电流的方向相反),这样的信号为差模信号若信号的极性相同(同样,电流的方向也相同),这样的信号称为共模信号差模又称串模,指的是两根线之间的信号差值;共模噪声又称对地噪声,指的是两根线分别对地的噪声所有的抗干扰措施都是针对共模噪声的 零点漂移 当放大电路输入信号为零时,由于受温度变化,电源电压不稳等因素的影响,使静态工作点发生变化,并被逐级放大和传输,导致电路输出端电压偏离原固定值而上下漂动的现象。它又被简称为:零漂主要原因: (1)温度变化(温漂) (2)电源波动 典型电路:差分放大电路 电路工作原理 在理想对称的情况下: 1.克服零点漂移; 2.零输入零输出; 3.抑制共模信号; 4.放大差模信号; 抑制共模信号 共模信号:数值相等、极性相同的输入信号 如 T(℃)↑→IC1↑IC2↑→UE↑→ IB1↓IB2↓→IC1↓IC2↓ 抑制了每只差分管集电极电流、电位的变化 放大差模信号 差模信号:数值相等,极性相反的输入信号 … KCMR 差分放大电路抑制共模信号及放大差模信号的能力,常用共模抑制比来衡量:放大器对差模信号的电压放大倍数Aud与对共模信号的电压放大倍数Auc之比,称为共模抑制比 在实际应用信号源需要有“接地”点,以避免干扰; 或负载需要有“接地”点,以安全工作; 四、互补输出级 输出级的要求:带负载能力强、直流功耗小、最大不失真输出电压 什么是互补对称输出级 集成运放的输出级采用的是互补对称输出级,互补对称输出级一定是射极输出器,即:共集电极接法 T1为NPN管,T2为PNP管 要求:两只管子参数相同,特性对称 共集电极接法 提升带负载能力 基本电路组成与工作原理 (1)特征:T1、T2特性理想对称 (2)静态时T1、T2均截止,UB= UE=0,uo = 0v (3)动态分析ui正半周,电流通路为+VCC→T1→RL→地,uo=ui-0.7≈ui,uo = ui ui>0→T2截止,ui>0.7v→T1导通 ui<0→T1截止,ui<-0.7v→T2导通 T1,T2管子交替工作,两路电源交替供电,双向跟随 集成运放的组成 电路由输入级、中间级、输出级构成 输入级采用差动放大器,中间级由一般放大器构成,输出级多为功率输出器,偏置电路则由电流源组成 若将集成运放看成为一个“黑盒子”,则可等效为一个双端输入、单端输出的差分放大电路 交越失真 输入信号很小时,达不到三极管开启电压,三极管不导电 因此在正、负半轴交替过零处会出现一些非线性失真,这个失真称为交越失真非线性失真亦称波形失真、非线性畸变,表现为输出信号与输入信号不成线性关系 消除交越失真的方法:选择合适的静态工作点 消除交越失真 选择合适的Q点,减小动态损失,避开死区电压区,使每一晶体管处于微导通状态,一旦加入输入信号,使其马上进入线性工作区 静态时,有一个回路(蓝色),首先让两只二极管导通,那么可以通过调整R1R2来调整回路电流,使得两只二极管导通电压加起来(b1b2之间的电压)刚好是T1、T2开启电压,或者稍微大一些 动态时,D1、D2等效为两个很小的电阻,由于RL从输入回路看阻值为原来的(1+β)倍,D1、D2的阻 值可忽略不计(ui为负时,只会减小流过D1的电流,但由于它非常小,可以忽略不计) 准互补输出级 为保持输出管的良好对称性,输出管应为同类型晶体管(T2和T4) 这种输出管为同一类型管的电路称为准互补输出电路。常用作功率放大,也称OCL电路 总结 1、(1)三极管的放大条件是什么? (2)三极管正常导通时硅管VBE和锗管VBE的导通电压分别时多是? (3)三极管输出特性是反应那两个量之间的关系? 2、(1)共发射极放大电路用于多级放大电路的那一级? (2)共集电极放大电路电压放大倍数和电流放大各有什么特点? (3)共基极放大电路主要用于那些场合? 3、固定偏置放大电路中,出现饱和失真和截至失真的原因是什么? 4、放大电路静态工作点不稳定的原因是什么? 5、(1)多级放大电路一般由那几部分组成? (2)多级放大器耦合方式有那几种? 6、(1)什么是差模信号? (2)零点漂移的原因是什么? (3)差分放大器理想对称情况下有什么有点呢,比如克服零点漂移,还有那几个优点呢? 题1 1.三极管这个厂放大信号:发射结应加正向电压,集电结应加反向电压 2.硅管VBE的导通电压约为0.7V,锗管VBE的导通电压约为0.3V 3.三极管输出特性反应了输入电压和输出电流之间的关系题2 1.共发射极放大电路用于多级放大电路的中间级 2.只有电流放大作用,无电压放大作用,输入电阻大,输出电阻小,常用作实现阻抗匹配或作为缓冲电路来使用,也可作为多级放大器的输出级 3.共基极放大电路主要用于高频放大器、高频振荡器、宽频带放大器题3 饱和失真的原因是输入信号过大,使得三极管处于饱和状态;截至失真的原因是输入信号过小,使得三极管处于截至状态题4 温度影响、电源电压波动、元件参数改变题5 1.输入级、中间级、输出级 2.阻容耦合、变压器耦合、和直接耦合题6 1.从一个系统的一对输入端看,若信号的极性相反(同样,电流的方向相反) 差模又称串模,指的是两根线之间的信号差值;而共模噪声又称对地噪声,指的是两根线分别对地的噪声;所有的抗干扰措施都是针对共模噪声的2.温度变化、电源被动 当放大电路输入信号为零时,由于受温度变化,电源电压不稳等因素的影响,使静态工作点发生变化,并被逐级放大和传输,导致电路输出端电压偏离固定值而上下漂动现象 3.克服零点漂移、抑制共模信号、放大差模信号、零输入零输出