• 如何计算偏置电阻?

    运算放大器在输入为0V的时候,输出不一定为0V,可能几十uV到几mv,这个叫做运算放大器的直流偏置,如果放大倍数比较大的话,这个直流偏置也会被放大,为了消除直流偏置,在运放的电源端和输入端加一个几M的电阻,或者有的运放本身就有调零端Voffset,接上一个电阻用于抵消直流偏置,这个电阻就叫做偏置电阻。 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 偏置电阻的计算 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。 首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。 若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说,Ic电流达到了最大值,就算Ib增大,它也不能再增大了。 以上两种状态我们一般称为开关状态,除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。若测Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态。 理解静态工作点的设置目的和方法 放大电路,就是将输入信号放大后输出,(一般有电压放大,电流放大和功率放大几种,这个不在这讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大小变化是有正有负,其它不说。上面提到在图1放大电路电路中,静态工作点的设置为Uce接近于电源电压的一半,为什么? 这是为了使信号正负能有对称的变化空间,在没有信号输入的时候,即信号输入为0,假设Uce为电源电压的一半,我们当它为一水平线,作为一个参考点。当输入信号增大时,则Ib增大,Ic电流增大,则电阻R2的电压U2=Ic&TImes;R2会随之增大,Uce=VCC-U2,会变小。U2最大理论上能达到等于VCC,则Uce最小会达到0V,这是说,在输入信增加时,Uce最大变化是从1/2的VCC变化到0V. 同理,当输入信号减小时,则Ib减小,Ic电流减小,则电阻R2的电压U2=Ic&TImes;R2会随之减小,Uce=VCC-U2,会变大。在输入信减小时,Uce最大变化是从1/2的VCC变化到VCC。这样,在输入信号一定范围内发生正负变化时,Uce以1/2VCC为准的话就有一个对称的正负变化范围,所以一般图1静态工作点的设置为Uce接近于电源电压的一半。 要把Uce设计成接近于电源电压的一半,这是我们的目的,但如何才能把Uce设计成接近于电源电压的一半?这就是的手段了。 这里要先知道几个东西,第一个是我们常说的Ic、Ib,它们是三极管的集电极电流和基极电流,它们有一个关系是Ic=β&TImes;Ib,但我们初学的时候,老师很明显的没有告诉我们,Ic、Ib是多大才合适?这个问题比较难答,因为牵涉的东西比较的多,但一般来说,对于小功率管,一般设Ic在零点几毫安到几毫安,中功率管则在几毫安到几十毫安,大功率管则在几十毫安到几安。 在图1中,设Ic为2mA,则电阻R2的阻值就可以由R=U/I来计算,VCC为12V,则1/2VCC为6V,R2的阻值为6V/2mA,为3KΩ。Ic设定为2毫安,则Ib可由Ib=Ic/β推出,关健是β的取值了,β一般理论取值100,则Ib=2mA/100=20#A,则R1=(VCC-0.7V)/Ib=11.3V/20#A=56.5KΩ,但实际上,小功率管的β值远不止100,在150到400之间,或者更高,所以若按上面计算来做,电路是有可能处于饱和状态的,所以有时我们不明白,计算没错,但实际不能用,这是因为还少了一点实际的指导,指出理论与实际的差别。这种电路受β值的影响大,每个人计算一样时,但做出来的结果不一定相同。也就是说,这种电路的稳定性差,实际应用较少。但如果改为图2的分压式偏置电路,电路的分析计算和实际电路测量较为接近。 偏置电阻的计算 在图2的分压式偏置电路中,同样的我们假设Ic为2mA,Uce设计成1/2VCC为6V。则R1、R2、R3、R4该如何取值呢。计算公式如下:因为Uce设计成1/2VCC为6V,则Ic&TImes;(R3+R4)=6V;Ic≈Ie。可以算出R3+R4=3KΩ,这样,R3、R4各是多少? 一般R4取100Ω,R3为2.9KΩ,实际上R3我们一般直取2.7KΩ,因为E24系列电阻中没有2.9KΩ,取值2.7KΩ与2.9KΩ没什么大的区别。因为R2两端的电压等于Ube+UR4,即0.7V+100Ω×2mA=0.9V,我们设Ic为2mA,β一般理论取值100,则Ib=2mA/100=20#A,这里有一个电流要估算的,就是流过R1的电流了,一般取值为Ib的10倍左右,取IR1200#A。则R1=11.1V/200#A≈56KΩR2=0.9V(/200-20)#A=5KΩ;考虑到实际上的β值可能远大于100,所以R2的实际取值为4.7KΩ。这样,R1、R2、R3、R4的取值分别为56KΩ,4.7KΩ,2.7KΩ,100Ω,Uce为6.4V。 在上面的分析计算中,多次提出假设什么的,这在实际应用中是必要的,很多时候需要一个参考值来给我们计算,但往往却没有,这里面一是我们对各种器件不熟悉,二是忘记了一件事,我们自己才是用电路的人,一些数据可以自己设定,这样可以少走弯路。 阴极偏置电阻和反馈电阻的计算? 对于输入级阴极处施加了大环路负反馈的功放来说,在设计的过程中,EP2C8F256CXNAA对阴极偏置电阻和反馈电阻的计算,容易成为最复杂的计算。不过,如果我们能保持镇定,通过画出众多简明扼要的电路分析图,把所有信息全部做好标注,那么,问题就可以得到简化,能达到我们可掌控的程度。 只在信封背面写写画画,是难以得到答案的。我们需要同时考虑如下4个主要因素。 ·我们需要正确地设置好阴极偏置电压。通常来说,这是欧姆定律的简单应用;但这里稍复杂一些,因为偏置电流将同时流过阴极电阻和反馈电阻。 ·榆入管本身在阴极电阻上产生电流反馈,而这个阴极电阻,还有来自于放大器输出端的电流流过。 ·我们需要设定好阴极电阻与反馈电阻的阻值比例,以便获得所需的负反馈量。 ·就我们关心的AC来说,阴极电阻是与输入管的‰并联的。我们已知道限制因素,现在,应该可以画图作标注,并利用公式进行一些计算。 由于我们需要让阴极电压等于2.5V,而阳极电流为190V/47kQ,因此,阴极与地线之间的总电阻必定为618.4Q。 要实现Mullard所称的11W的EL84推挽输出功率,需要让输入管阳极信号摆幅达到8.636。这意味着,阳极信号电流须为8.636V/47kQ=0.1837mARMs。这个电流也流进阴极电路,在没有作旁路处理的电阻上形成反馈电压。 我们希望这台功放的输入灵敏度为2Ms,我们还知道,在施加大环路负反馈之前,输入灵敏度为298Ms。因此,阴极处的反馈电压需为2V一0.298V=1.702Ms。我们知道,在输出10W时,功放的输出信号将是8.944Ms。

    06-23 65浏览
  • 数字音频信号处理系统的基本构架

    一、G729语音编码算法介绍目前国内数字语音处理产品大多采用专用芯片对语音数据进行编解码,导致硬件成本较高。同时,如果后续开发过程中需要对平台升级,由于硬件平台固定的缘故,必须重新...

    2024-12-31 256浏览
  • 模拟电路入门100个知识点

    二极管正向偏置时,其正向导通电流由多数载流子的扩散运动形成。

    2024-12-19 136浏览
  • 运放电路实现高增益电压放大设计

    基于集成运放设计一传感器信号采集电路。传感器输出信号为交流形式,峰峰值在100mV以内,频率为1000Hz以内,模数转换器允许输入电压在0~3V,要求设计传感器与模数转换器之间的信号采集电路,实现传感器输出信号与ADC范围的匹配(峰峰值在100mV与0~3V的线性映射)。模数转换器的输入电阻为1K,可使用1K电阻作为信号采集电路负载。 实具体要求如下: (1)确定电路形式,说明电路输入输出的关系式。(2)确定电路中运放的型号,说明能够满足电路带宽要求的依据。(3)利用Altium Designer或Multisim绘制原理图,并进行仿真。 (4)选做:进行实际电路制作。 2. 实验结果(1)在下方列出所设计电路的原理图 图1 所设计电路的原理图 结合所设计的电路图说明该电路的工作原理。 工作原理:该电路由电压抬升电路和同相比例放大电路两部分构成。 输入信号v2 -50~50mv经过电压电路抬升后Ui为0~100mvUi进入同相比例放大电路放大Uo=(1+R6/R5) Ui=30Ui因为Ui为0~100mv放大30倍后为0~3v输入adc芯片。 (3)说明集成运放的选型依据,参考集成运放数据手册,给出相关指标,说明能够满足带宽要求的依据。 功放选择:AD827参数及优点:高速 单位增益稳定工作带宽:50 MHz 压摆率:300 V/µs 建立时间:120 ns 驱动无限大容性负载 出色的视频性能 差分增益误差:0.04% (4.4 MHz) 差分相位误差:0.19° (4.4 MHz)良好的直流性能 输入失调电压:最大2 mV 输入失调电压漂移:15 mV/°C 依据EIA-481A标准提供卷带和卷盘形式低功耗 内部两个放大器的总电源电流仅10 mA(±5 V至±15 V电源)单位增益带宽为50mhz,满足带宽要求。 (4)对电路输入输出关系进行仿真,给出与理论表达式的对比结果,并进行结果分析。理论计算:输入vpp100mv,峰值vpk=50mv有效值vrms=vpk/√2=35.36mv即Ui=35.36mv,同相比例放大Uo=(1+R6/R5) Ui=30Ui后Uo=70.72*15=1.06v。仿真结果Ui=0.035v,Uo=1.052与理论值基本一致。 Ui经抬升后峰峰值为0~100mv,经同相比例放大30倍后峰峰值为0~3v,符合题目所给模数转换器允许输入电压在0~3V的要求。 (5)给出当输入信号幅度为50mV,频率为1000Hz时的输出波形,并在图中标注输出波形的峰峰值、最大值和最小值,与输入波形进行对比,进行结果分析。 (抬升电路波形)图2 输出信号波形图(放大电路) 三、实验思考题1、电压放大电路的带宽主要取决于集成运放的哪个参数?答:主要取决于集成运放的带宽增益。 2、是否存在开环增益不受信号频率影响的集成运放?如果存在请说明该运放的类型。答:不存在开环增益不受信号频率影响的集成运放。 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议 原文链接:https://blog.csdn.net/qq_56902089/article/details/122513984

    2024-12-13 187浏览
  • 在FPGA中如何确保AD9361的稳定性能?

    传统的射频收发器硬件架构由分立的LNA,Mixer,VGA,ADC/DAC,IQ调制器和射频频综等芯片组成。AD9361是一款面向3G和4G基站应用的高性能、高集成度的射频RF Transceiver。该器件的可编程性和...

    2024-11-29 492浏览
  • 为什么要阻抗匹配?

    一、什么是阻抗匹配?阻抗匹配指通过调整输入阻抗和输出阻抗来使得电子器件满足一定条件,通常该条件是使得系统传输功率最大或者使得信号反射最小。

    2024-09-24 641浏览
  • 功率放大器的特点与作用

    功率放大器是生活中的常见器件之一,但是对于功率放大器你真的了解吗?为增进大家对功率放大器的认识,本文将对功率放大器的定义、用途、功率放大器的特点以及功率放大器的作用予以介绍。如果你对功率放大器具有兴趣...

    2024-08-09 296浏览
  • 功率放大器都有哪些分类?

    功率放大器在现实中具备诸多适用,如A类功率放大器等。在往期文章中,小编对功率放大器的技术指标、功率放大器的工作原理、功率放大器的定义等知识有所介绍。为增进大家对功率放大器的认识,本文将对功率放大器的分...

    2024-08-09 334浏览
  • 音箱功放搭配:阻抗、功率、阻尼、灵敏度

    音箱功放搭不搭,这4个指标你看懂了吗? 功率、阻抗、频响、灵敏度、失真度、阻尼、信噪比、功耗、增益......音响的技术指标一大堆,小白看着头都大?别着急,我们在搭配功放和音箱时,最主要看这四个硬指标:阻抗、...

    2024-07-31 425浏览
  • 如何正确设置AV功放以获得最佳效果?

    按照使用元器件的不同,功放又有“胆机”[电子管功放],“石机”[晶体管功放],“IC功放”[集成电路功放]。近年来由于新技术,新概念在胆机中的使用,使得电子管这个古老的真空器件又大放异彩,它的优美的声音,令许多烧...

    2024-07-31 356浏览
正在努力加载更多...
EE直播间
更多
广告