智能交通系统是车辆有序运行的重要保障,道路环境感知技术是智能交通系统的基础。传感器感知并采集周围环境数据在实现无人驾驶的各个阶段都不可或缺。多传感器信息融合(Multi-Sensor Infor⁃mation Fusion,MSIF)就是利用计算机科学技术将来自各个传感器或多源头的信息和数据在预定的规则下进行数学分析加上信息综合,以完成相应的决策和必要的估算而执行的信息处理过程。在这个过程中要充分地利用多源数据进行合理操作与使用,信息融合不但运用了多个传感器互相协同工作的优势,并且运用算法综合处理了大量其它信息源数据,使得整个传感器系统更加智能,信息融合的最终目的就是基于各个传感器获得的分离观测信息,对信息多级别、多维度分析综合之后推理出更多有价值的信息,对车辆的行为进行决策。在这个过程中,多传感器信息融合算法有着不可替代的决策作用,所有的信息汇总之后经由算法得出最终的决策判断。近年来随着芯片、计算机科学技术的快速发展,硬件算力的提升极大促进无人驾驶算法的发展,本文从多传感器的硬件配合应用出发,重点介绍近年来用于无人驾驶的信息融合算法的研究与进展,提出基于机器学习的算法研究是未来的发展趋势。
传感器应用现状
无人驾驶车辆在面对复杂的路况环境下,需要大量的传感器采集路况信息供车辆综合分析得出决策,单一、同类型的传感器无法满足无人驾驶车辆分析路况信息的需求,在不同的道路环境下,不同传感器有各自的独特优势,目前国内外应用较多的主要分为3类:
(1)基于激光雷达;
(2)基于激光雷达加摄像头;
(3)基于摄像头。基于激光雷达的定位方法完全依赖于激光雷达传感器,具有测量精度高、处理方便的优点。然而,尽管激光雷达行业努力降低生产成本,但与摄像头比,它仍然有很高的价格。在典型的基于LiDAR+Camera的定位方法中,LiDAR数据仅用于建立地图,并使用摄像头数据估计无人驾驶汽车相对于地图的位置,从而降低了成本。基于摄像机的定位方法是廉价和方便的,但是易受环境的影响,特别是遇到大风、下雨、雾霾的恶劣天气,单纯基于摄像头的定位通常不精确、不可靠。2.1 激光雷达的应用
激光雷达的工作原理:激光雷达(LiDAR)能释放多束激光,接受物体反射信号,计算目标与自身的距离。应用较多的是利用反射信号的折返时间计算距离(ToF),也有调频连续波(FMCW)方法。激光雷达具有分辨率高、隐蔽性好、抗有源干扰能力强、低空探测性好、轻便灵巧的优点,不足是全天候性能低于微波雷达;波束窄,搜索目标困难;技术上难度较大。在过去的几年中,Mobile LiDAR取得了很大的进步。移动激光雷达捕获不再需要专家精心组装的大量电缆和配件。现在,所有测绘级传感器(例如Velodyne和Ouster的传感器以及RIEGL、Trimble和Leica的测量级平台)都更容易携带,即插即用。从宽的垂直视场或更长的测量范围到多脉冲或更高的精度,每种传感器都有其自身的优势。激光雷达的发展趋势主要有2方面:(1)挑战点密度和机器学习;(2)减少人工干预。2.2 毫米波雷达的应用
毫米波雷达发射电磁波并检测回波来探测目标物的有无、距离、速度和方位角。主要原理是:通过振荡器形成持续变化的信号,在发出信号和接收信号之间形成频率差,其差值与发射-接收时间差成线性关系,只要通过频率差就能计算车辆与物体距离。毫米波雷达测速原理和普通雷达类似,有2种方法:(1)基于多普勒原理,因发射的电磁波和被探测目标产生相对移动,回波的频率会和发射波的频率不一样,经过检测频率差可测得目标物相对于雷达的移动速度。但这种方法不能测得切向速度;(2)通过跟踪位置,进行微分求得速度。毫米波雷达的发展在对雷达传感器选择上是采用短距的24 GHz与长距的77 GHz组合还是全部采用77 GHz雷达一直是技术争论的焦点,首先,77 GHz毫米波雷达的检测精度更高,相对体积更小巧,利于车上器件安装和布局,77 GHz的波长是3.9 mm,是真正意义上的毫米波。由于天线尺寸随着载波频率上升而变小,所以77 GHz波段的毫米波雷达系统尺寸也会比24 GHz更紧凑。77 GHz毫米波雷达正逐步取代24 GHz,成为汽车领域主流的传感器。2.3 摄像头的应用
车载摄像头是ADAS系统的主要视觉传感器。是实现众多预警、识别类ADAS功能的基础。通过镜头采集图像,由内部感光组件电路及控制组件对图像进行处理并转化为数字信号,从而感知车辆周围的路况,实现图像影像识别功能。在众多ADAS功能中,视觉影像处理系统较为基础,对于驾驶者也更为直观,而摄像头又是视觉影像处理系统的基础,因此车载摄像头对于智能驾驶必不可少。车道偏离预警(LDW)、前向碰撞预警(FCW)、交通标志识别(TSR)、车道保持辅助(LKA)、行人碰撞预警(PCW)、全景泊车(SVP)、驾驶员疲劳预警众多功能都可借助摄像头实现,有的功能甚至只能通过摄像头实现(表1)。车载摄像头包括单目摄像头、双目摄像头、广角摄像头。表1 各类传感器特点对比
多传感器信息融合的核心算法
无人驾驶感知模块中传感器融合已经成为了标配,只是这里融合的层次有不同,可以是硬件层(如禾赛,Innovusion的产品),也可以是数据层,还可以是任务层,如障碍物检测(Obstacle detection)、车道线检测(Lane detection)、分割(Segmentation)和跟踪(Track⁃ing)以及车辆自身定位(Localization)等。对于多传感器系统来说,时刻要面对多样性、复杂性的环境信息,鲁棒性和并行处理的能力便成了无人驾驶对信息融合算法的最基本要求。运算速度、识别精度、连接前端预处理系统以及后端信息识别系统的接口稳定性、对不同技术和多种方法的上下兼容多方协调能力、对信息样本和信息质量的特殊要求的多种能力也都作为算法性能的考察方面;通常以非线性数学为基础的方法,若同时具备容错性、自适应性、联想记忆以及并行处理的能力,则均可作为融合算法使用。
3.1 随机类
3.1.1 加权平均法信号级融合最直接的方法是加权平均,对多个传感器测量到的多条冗余信息进行加权平均,将最终的结果作为融合值。该方法直接对数据源进行处理,其所求得的平均数,已包含了长期变动趋势。但是一般用于数据的前期处理,加权平均主要作为辅助算法使用。3.1.2 卡尔曼滤波法对一个运动物体,能直观观察到它当前的运动状态。然而,一般都无法精确测量物体当前的运动状态,而更多试验中需要预测物体在下一时刻的运动状态,对现场环境进行测量时,系统会存在相当的干扰噪声。这时就需要估计当前的运动状态,卡尔曼滤波(Kalman filtering)是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。卡尔曼滤波预测方程见图1。

3.2 AI类
3.2.1 基于多传感器体系结构的算法多传感器融合在体系结构上可分为3种:(1)数据层融合处理,针对传感器采集的数据,依赖于传感器类型,进行同类数据的融合。数据级的融合要处理的数据都是在相同类别的传感器下采集,所以数据融合不能处理异构数据,流程如图3所示;


结论与展望
本文综述了多传感器信息融合在无人驾驶中的研究现状,总结得出了多传感器信息融合是一门跨多个学科的综合理论和方法,这些理论和方法还处在不断变化和持续发展过程中。
(1)随着各传感器硬件的快速迭代,多传感器信息融合有了更好的解决方法,在硬件方面,传感器的制造与研发是重点,如何将各个传感器更加完美的配合在一起,更好更快的得到车辆行驶过程中的海量数据是实现无人驾驶技术的关键,其中包括摄像头如何更好克服环境因素的干扰,77 GHz毫米波雷达的成熟生产制造工艺流程的设计,以及如何降低激光雷达的使用成本都是产业化需要克服的问题。
(2)在数据采集方面,多传感器数据收集主要集中在摄像头、激光雷达和毫米波雷达3类传感器搭载在地面车辆上,但目前缺少针对中国复杂交通环境建立起来的数据集,交通部门相关工作的推进完善会为数据采集提供更好的环境,为加快无人驾驶的发展提供基础支撑。另外,数据融合系统的设计还存在很多问题,包括还没有很好解决融合系统中的容错性和鲁棒性问题,各传感器如何克服恶劣交通环境下的信息融合也需要被关注。
(3)多传感器融合算法性能的评价标准不一,未形成基本的理论框架和广义的融合算法,都是在各自特定的领域特定的问题中展开的,建立多传感器融合算法性能的评价标准是推动汽车行业多传感器融合发展的重要举措之一。