MEMS惯性传感器如何帮助克服空间定向障碍
Ofweek 2022-12-16

作者:Marc Smith 技术团队主要成员

  儿童和狗能够毫不费力地辨别方向以及控制体操动作。有些人认为这就像“小孩游戏”一样简单,直到他们试图使机器人模仿这种本领。人类定向系统的复杂性不可思议,当我们在地面上时其表现非常出色。相反,在飞机上时,我们则处于一种不熟悉的三维环境下,再加上缺少视觉定向参考,就难以或不可能管理空间(距离)方位。5%至10%的一般航空事故与空间定向障碍有关,其中90%是致命的。

  微机电系统(MEMS)惯性传感器的设计在本质上对运动非常敏感,可有效检测和处理线性加速、磁航向、海拔和角速率信息。为充分利用惯性传感器的性能潜力,设计者必须熟悉总体机械系统,密切关注应用中的运动源和谐振。

  本文介绍了MEMS惯性传感器(例如陀螺仪和加速计)如何帮助人或机器克服空间定向障碍。文章介绍了外力和运动对系统工作的影响,以及元件布局和安装条件(空间关系)对MEMS惯性传感器性能的直接影响。系统配置各有不同(例如尺寸、材质、安装方法),设计者需要根据具体应用设计特定的方案。文章还介绍了如何检测并减少错误的惯性信号。对于实际环境中出现有害的移动信号和系统共振的情况,文章给出增强传感器系统工作的实用建议。

  人类的平衡

  本文首先从讨论平衡开始,以人类耳朵为例。图1中的耳蜗是听觉器官。耳膜通过我们身体中一些最小的骨骼振动耳蜗。耳蜗长有毫毛或纤毛,并且充满液体。当耳蜗移动时,液体由于惯性的原因并不移动。纤毛感测这种运动差异,并将神经脉冲传输至我们的脑部,表现为声音。

克服定向障碍:装配MEMS惯性传感器的实用方法

  图1.人体平衡和听力是内耳中复杂平衡器官的一部分。

  人耳也包含用于平衡的运动检测系统。三个半规管的作用类似于相互垂直的陀螺仪,感测并将脉冲信号送至脑部,表示人的平衡状态。不幸的是,我们感测运动的方式存在局限性。

  如果运动小于2度每秒时,我们将感测不到;如果稳定运动的时间超过20至25秒,我们则会停止感测运动。这种人类局限性会引起错乱。在内耳中存在其他两个感觉器官:椭圆囊感测线性加速度,球囊感测重力。耳朵中的全部5个感觉器官向脑部传送身体方位和运动信息,帮助我们平衡。这和眼睛一起,帮助我们维持平衡,并且在头部运动或身体旋转时使我们的眼睛盯住目标。

  飞机中的飞行员与空间定向

  飞行员都知道不要靠直觉(即不依赖于内部感观)飞行,而是要依赖于飞行仪表。这非常难以掌握,尤其在紧急和恐慌的情况下。

  根据美国联邦航空管理局(FAA)的信息,飞行员受一种称为“墓地盘旋”的常见错觉影响。这与有意识或无意识长时间倾斜转弯后恢复水平飞行有关。例如,当飞行员开始倾斜向左转弯时,最初会感觉到在相同方向的转弯;如果继续向左转弯(约20秒或更长),飞行员就会觉得飞机不再向左转弯。此时,如果飞行员试图将机翼调整水平,这一动作将会使其感觉到飞机正在向相反的方向(向右)转弯和倾斜。如果飞行员相信向右转弯的错觉(会非常强烈),他将试图纠正右转的感觉,从而重新进入最初的左转。不幸的是,发生这一切时,飞机仍在左转,并正在下降。正在转弯时拉起控制杆并增加动力不是一个好主意——只能使飞机更向左转。如果飞行员没有认识到错觉,未能使机翼水平,飞机将继续左转并降低高度,直到撞击地面(参考文献2)。

  问题是MEMS陀螺仪和加速计能够帮助飞行员克服空间定向障碍吗?

  MEMS惯性传感器是解决之道

  人体会受到欺骗,并且在有些情况下必须依赖于外部帮助才能实现良好平衡。由于人体容易受空间定向障碍的影响,MEMS惯性传感器提供了一套解决方案。可利用安装正确的惯性传感器建立惯性坐标系参考,帮助用于判断方向和/或运动。利用这些器件可避免错误感观隐患。

  为确保惯性传感器工作的可靠性,必须将其正确安装和定向。对于装配惯性传感器,有一套良好的设计实践,只要应用得当,可形成高性能系统。

  装配MEMS惯性传感器的实用方法

  从一开始就理解基本原理至关重要:发生振动时,惯性传感器在PCB上的位置可能是首先要考虑的事项。因此,惯性传感器如何安装、安装条件,以及其放置位置/方向,均会影响总体机械系统特性。简而言之,如果设计考虑不周,发生运动时惯性信号性能将下降。

  注意:也强烈建议分析总机械系统及其对惯性传感器性能的影响。

  布置事项

  首先从方向开始。相对于一定的基准(常以选定的PCB侧面为参考)放置惯性传感器,并在贴装回流焊接过程中保证定位不变是一项极具挑战性的工作。此外,每级装配(传感器到封装、封装到PCB、PCB到外壳等)都会增加安装误差。由于传感器装配方位(相对于惯性坐标系)决定系统精度,所以此时必须将所有误差降至最小。图2所示为方位不正确引起的误差。软件可校准装配误差,但如果不限制误差源,高阶误差会降低传感器性能。

克服定向障碍:装配MEMS惯性传感器的实用方法

  图2.惯性传感器装配误差示意。图片来源:Juansempere,en.wikipedia

  热机械应力是一种潜在误差源,可在惯性传感器上形成热梯度,引起封装应力;以及在PCB上形成热梯度,将应力传递至惯性传感器。这两种热效应有时难以区分,有些情况下则两者均有。结果造成封装应力,可引起偏差(及偏移)和灵敏度性能误差。发热量较大的器件应远离惯性传感器,但在实际的紧凑的中,有时难以满足这一要求。无论如何,必须尽一切努力使惯性传感器远离热源,将温度梯度降至最小。

  装配事项

  贴装元件时要求了解和应用适合特定回流焊的最佳温度。由于这些操作通常侧重于焊接强度、可靠性和产量(即成本),有时会忽略惯性传感器需要特殊考虑的事项。例如,非最优化的冷却阶段会对惯性传感器封装形成残余应力,从而导致性能下降,造成超出指标的偏差和缩放因子。

  PCB的保形涂层常用于防止电路受潮、化学污染(例如盐)以及其他破坏性影响。不建议惯性传感器器件采用保形涂层。涂层会改变传感器的机械条件,影响总机械系统特征。而且难以控制保形涂层的应用(即黏度、干燥厚度)。

  机械系统事项

  外部运动源(例如惯性信号、冲击、振动)会意外激励PCB产生谐振,在最坏的工作条件下,可能发生惯性信号实际是系统谐振引起的假象的情况。这些错误的信号作为噪声,掩盖惯性信号(例如移动和/或振动)。当发生谐振条件时,惯性传感器相对于PCB上波谷、波节、波峰的位置会造成信号检测性能下降。

  图3所示为惯性传感器在PCB上的两种布置方法,标出了主要的谐振模式。左下方位置的传感器位于节区(蓝绿色)。相对于PCB右上方的传感器,该位置的谐振相关角速率减小。第二个惯性传感器位于节区与波谷(以深蓝色表示)斜面之间的边缘处。该传感器处于不平衡位置,在谐振条件下更容易发生加速度和角速率信号畸变。

克服定向障碍:装配MEMS惯性传感器的实用方法

  图3.PCB谐振及惯性传感器布置模拟。下方节区内传感器位置的谐振相关角速率信号被衰减。上方的第二个传感器处于不平衡位置,更容易发生加速度和角速率信号畸变。感谢FEKO提供PCB图像,版权归其所有。

  尽管有很多技术可用于减轻PCB谐振(例如强化、系统阻尼、振动隔离),但仍需对总机械系统进行全面分析。应执行有限元分析(FEA),以识别所有潜在谐振模式及其相关的频率和品质因数。然后即可实施好的设计技巧,增强性能。

  结论

  本文回顾了运动,理解了MEMS惯性传感器对于帮助克服空间定向障碍的重要性。本文也讨论了不好或不理想的布置、安装条件及系统谐振对MEMS惯性传感器性能的不利影响。遵循正确的设计考虑事项,完全可“绕开”这些“困难重重”的事件,实现MEMS惯性传感器应有的性能。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 医疗
  • 脑机接口
  • 额温枪
  • 呼吸机
  • 喷头选型有哪些要求

    第四节 主要组件 (一)喷头 1、结构:开式、闭式 2、安装:下垂、直立 3、热敏元件:玻璃球、易熔元件(闭式)高于室内环境38+30℃ 57+11+11+14+14+14 红色68,一般 橙色57,冷库保鲜,东北寒冷 黄色79 绿色93,公共建...

    01-14
  • 无线医疗的重点考虑因素

      引言  在许多国家,国民医疗支出在国内生产总值(GDP)中所占的百分比不断增长。图1取自世界卫生组织(WHO)的统计数据,显示了6个发达国家的医疗支出,其中

    2024-07-18
  • 心电除颤模拟发生系统的嵌入式设计

    随着社会的发展,人们的医疗保健意识越来越强,所以医生的培训也就成为非常重要的环节。心电除颤技术作为医生培训的一个主要方面,若操作规范,动作熟练,往往在紧急关头可以救人于危难之间,在培训的时候,如果能...

    2024-06-14
  • 片上系统架构在便携式医疗电子中的应用:实现高效、便携、低功耗的医疗设备设计

      众所周知,近年来便携式医疗电子已经有了极大的发展并且被广泛应用。越来越多的新产品已经在市场上出现。实效性好的可以大量生产的就是那些设计简单、性能优越的方案,

    2023-12-19
  • 探索远程医疗监护技术在平板电脑中的应用:便携性与实时监护的突破性解决方案

      可以想象,老年人采用功能极为完善的远程医疗监护设备,通过视频链接与医生讨论自己的健康护理问题将是怎样的情景。还可以想象,医生能够通过云计算服务监控病人的健康

    2023-12-18
  • DLP技术在医疗领域的应用解析:探索创新治疗和诊断方案

      我们知道,DLP技术具有广大的市场商机,能为企业、个人电子产品、工业和车载等市场带来不同的应用创新,甚至是对元器件体积、性能、功耗都有极高要求的可穿戴设备,

    2023-12-15
  • 医疗机器人行业七大关键技术解析

      中投顾问在《2016-2020年中国医疗机器人(300024)产业深度调研及投资前景预测报告》中表示,医疗机器人行业主要关键技术有以下七项:  一、优化设计

    2023-12-06
  • 心电除颤模拟发生系统,采用嵌入式的开发方案

    随着社会的发展,人们的医疗保健意识越来越强,所以医生的培训也就成为非常重要的环节。心电除颤技术作为医生培训的一个主要方面,若操作规范,动作熟练,往往在紧急关头可以救人于危难之间,在培训的时候,如果能.

    2023-11-13
  • 心电监护终端的硬软件设计

    心脏病是严重威胁人类健康和生命的主要疾病之一。统计显示约60%的心脏病人死于家中,这些病人如果能够及时获得抢救、护理,是完全可能避免死亡的。由于心脏病发作带有很大的偶然性和突发性,将心电监护从病床、.

    2023-11-10
  • 一种基于仪表放大器AD620的心跳速率检测方案

    目录1.AD620芯片2.电路设计2.1原理框图2.2基于AD620的信号提取电路2.3滤波放大电路2.4微处理器电路3.实验结果及讨论结论  心跳速率是反映身体健康状况的关键指标值,简单来说心跳速率就是指1分钟内心血管搏动的频...

    2023-11-07
  • 移动医疗设备应用之连接器技术的发展解析

      便携和可穿戴的医疗设备代表了医疗技术行业中高速增长的巨大市场。病人监护仪正在从医院病床边的固定式设备逐渐演化为小型的轻量级集成设备,可为病人提供充分的移动性

    2023-05-29
下载排行榜
更多
评测报告
更多
广告