深入了解运放在电路设计中的关键应用与计算方法
衡丽科技
236浏览
0评论
0点赞
2023-11-28
1、反相输入比例运算电路
反相输入比例运算电路如下图所示,
其电压放大倍数为
在实际应用时应注意:
(1)此类电路的电压放大倍数不宜过大。通常Rf宜小于1MΩ,因Rf过大会影响阻值的精度;R1不宜过小,R1过小将要从信号源或前级吸取较大的电流。
(2)作为闭环负反馈工作的放大器,其小信号上限工作频率fH 受运放增益带宽积GBW= Avd*fH的限制。以μA741为例,μA741基本参数如下:
其开环差模电压放大倍数Aud=10^5倍,开环fH=10Hz,故运放的单位增益上限频率fT=1MHz,即作为电压跟随器或反相器工作时的最高工作频率为1MHz。若用μA741设计Auf为20dB即便10倍的放大电路,则电路允许的上限频率为100kHz。
(3)如果运放工作于大信号输入状态,则此时电路的最大不失真输入幅度Vim及信号频率将受运放转换速率SR的制约。仍以μA741为例,其SR=0.5 V/μs,若输入信号的最高频率为100kHz,则其不失真最大输入电压Vim<=(SR)/(2*pi*fmax)=0.5*10^6/2*pi*10^5=0.8V。 SR:压摆率单位时间(一般用微秒)器件输出电压值的可改变的范围。 (4) 该电路中R1=RF时 ,Au=-1,Uo=-Ui,为反相器。
2、单电源供电反相交流放大器 单电源供电反相交流放大电路以LM358为例,电路图如下所示:
该反向放大器的特点和使用技巧:
(1)输出信号与输入信号反相。
(2)输入阻抗较低,约为R1,这是我们不希望的。
(3)输出阻抗较小,这一指标较好。
(4)电压放大倍数由R1和Rf比例确定,可以做的比较高。
(5)共模抑制比CMRR较好。
推荐电压放大倍数不大于30dB(约33倍),R1和Rf可在1千欧~几百千欧间选。一般R1取值范围1k~20k,Rf取值为(1~33)R1。这里指出一个误区,在电子设计制作或实验时,往往加大Rf/R1的值,以获得大的Au,以为Au越大越好,事实上,当Au>33时已超出运放的线性范围,是不可取的,应予注意。
3、同相输入比例运算电路同相输入比例运算电路如下图所示,
其电压放大倍数为:
为使输入电流引起的误差最小,应取平衡电阻Rp=Rf//R1。当Rf//R1=0时,即使用一根导线替代Rf,Auf=1,电路演变成为电压跟随器。 该同向放大器的特点和使用技巧:
(1)输出信号与输入信号同相。
(2)电压放大倍数由R1与RF的比例确定,可以做得比较高。
(3)由于电路引入深度电压串联负反馈,使得输入电阻增加(1+AF)倍,可高达几兆欧,输出电阻减少1/(1+AF倍),一般可视为0.。关注公众号“电路一点通” 回复 进群. 当然输入阻抗较高是同向放大器的优点。
(4)同向放大器的共模输入电压不为0,所以共模抑制比CMRR较小。
使用时推荐电压放大倍数不大于30dB(约33倍),R1和Rf可在1千欧~几百千欧间选。一般R1取值范围1k~20k,Rf取值为(1~33)R1。Au,R1,RF的选取和反向放大器一样。
4、反相输入比例求和电路 反相输入比例求和电路如图所示,
其输出电压为
平衡电阻Rp= Rf// R1// R2// R3。
5、差动放大电路 差动放大电路如图所示,
其输出电压为Vo= -(Rf/ R1)*V1+(1+ Rf/ R1)*(1+ R3/ (R2+ R3))*V2
6、积分运算电路 积分运算电路如图所示。
其输出电压为
电路中电容为反馈电容。可以实现波形变换,将矩形波变为锯齿波,还可实现移相90°、延时等。通常,为限制低频电压增益,在积分电容C两端并联一个阻值较大的电阻Rf。当输入信号的频率:fi>1/(2*pi* RfC)时,电路为积分器;若fi<<1/(2?*pi*RfC),则电路近似于反相比例运算器,其低频电压放大倍数Avf约等于-Rf/ R1 。当Rf=100kΩ、C=0.022uF时,积分与比例运算的分界频率约为1/(2*pi*pi*RfC)= 1/(2*pi*100*10^3*0.022*10^6)=72Hz。
7、微分电路 将积分电路RC互换位置,便得到微分电路。能将矩形波变为正负尖脉冲,能将输出信号超前移相90度。电路图如下所示:
8、信号滤波器电路 按频率特性分,滤波器分低通、高通、带通、带阻、全通。LC滤波器一般用于高频电路,RC滤波器一般用于低频电路。例:一阶低通有源滤波器如下图所示。
电路中参数计算如下:
声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
-
在线直播意法半导体“在中国,为中国”战略,STM32最新产品、应用及生态;
STM32线上训练营带您玩转机械手直播:边缘AI及GUI软硬件开发特训,ST资深专家在线互动答疑。
-
-
目录电流采样方式低侧电流采样高侧电流采样高侧电流电路设计示例TI:40V~
-
-
-
-
文介绍了三相锁相环的基本原理及其在电力系统中的应用,特别是在输入信号频率突变时的锁相效果。
-
一、LDO概述在电压转换电路中,LDO和DC-DC电路是最常用的两种方式,本篇主要介绍LDO相关内容。
-
-
图1电路在今天可能吸引力没有那么大了,因为现在有了更先进的放大器,如LTC6268,同时兼顾了低电压噪声和低输入偏置电流。但了解一下也是非常值得的,甚至在一些应用里降成本时没准可以用到,比如色谱仪。
-
下面我们通过举例介绍一个晶振的规格书参数,来和大家分享下怎么选型一个合适的晶振,以及涉及到的部分计算内容。
-
可靠性设计就是选用在最坏的使用环境下仍能保证高可靠性的元器件的过程。
-
关注回复“加群”,加入硬件电子学习交流群。本期的电路图来自ZLinear的开源数据采集板卡DL8884_RFN,是一个比较常见的电压偏置采集法(电路图已取得作者授权发文)。