FLY高低压输出-以FLY为例来进行理论和实际的测试分析
Ofweek 2023-05-30

现在的电子产品&设备,我们应用开关电源方式除了效率以外,空载或者待机功耗也变得越来越重要了!这不仅是因为各种各样的能效标准的执行,也符合实际应用的需求;特别对于一些电子电器甚至大部分的用电设备都需要长时间工作在待机状态。

我们用AC/DC的开关电源系统,不同的产品应用要求不一样,有500mW、300mW、再到100mW,后面还会要求充电器达到10mW以下功耗要求!我以FLY为例来进行理论和实际的测试分析。

1.分析及测试原理图

输入部分损耗

1.脉冲电流造成的共模电感T的内阻损耗加大适当设计共模电感,包括线径和匝数对待机功耗也会有帮助

2.放电电阻上的损耗;在符合安规的前提下加大放电电阻的阻值

3.热敏电阻NTC上的损耗;在符合其他指标的前提下减小热敏电阻的阻值

这里最大的损耗就来自于X电容放电的电阻。大部分的安规标准都要求1s内把X电容的电压放到安全电压以下。这样容值越大,放电的电阻就越小,损耗也就越大。举个例子,0.47uF的电容并联3.3M的电阻,230Vac条件下的空载损耗就有~18mW。

4.整流桥的后面在母线上会有几个高压器件,需要特别注意漏电流的大小!300V的母线每10uA就产生3mW的损耗。

半导体器件一般来说都还好,比如整流桥、MOSFET,关断时的漏电基本都在1uA以下。高温情况下会大一些;但在空载损耗基本也只看常温条件,没有负载电路本身也没热量产生。电解电容的漏电在有些情况下就不能忽略了,电容越大漏电流越强,基本上是和CV成正比关系的。而且电容的质量参差不齐,质量差的电容漏电流要大好几倍。可以测试一下如果达到10uA这个数量级了使用的时候就要小心一些了。

5.对于开关电源IC-FLY我们有意要做低待机功耗;至少要先一个有内置高压启动电流源的!如果真没有的话,也至少需要外搭一个。 一些没有高压引脚的芯片也提供一个控制引脚来连接外置的高压开关管;这样系统的BOM会复杂一些了!本测试原理的控制方式如下:

芯片本身的功耗是Icc*Vcc/?Icc是工作电流,Vcc是工作电压,是转换效率。因为芯片稳定工作的工作电压一般都来自辅助绕组,所以取决于开关频率和功率电路的设计,后面也会陆续提到影响转换效率的一些因素。

目前我了解的趋势分析,AC/DC类的功能电源芯片,只要功能不是特别复杂的,Icc都应该能做到uA这个数量级。只有一些很复杂的芯片,比如PFC+LLC combo这种,或是大功率电源中所采用的数字芯片耗电才会在mA级别。特别大功率的电源有时会采样辅助电源的方式来解决待机功耗!!

Vcc则是取决于辅助绕组的设计。为了是芯片功耗最小化,设计的时候当然应采用尽量低的供电电压。只是要注意辅助绕组提供的电源一般会随着负载减轻而降低。必须保证Vcc在空载条件下也能保持在最低工作电压以上。

芯片的控制方式可以说是决定待机功耗最重要的一环。

轻载或空载状态下,开关损耗在转换效率中占主导地位。

因此为了降低待机功耗,大部分电源芯片都采取轻载降频的控制方式。FLY架构现在比较流行的一种复合控制模式:重载时采用PWM,随着负载减轻频率下降,在接近空载的区域采用Burst的工作模式进一步降低开关频率(如上图示)!

这种控制方式在实际应用中有一个矛盾需要考虑。理论上来说保持最大的ipk可以在空载状态下获得最低的开关频率(1/2 *Lm*ipk^2*fs)。但开关频率在20kHz一下就会有噪音的问题,从这个角度来看就需要ipk越小越好。因此在实际应用的时候就需要找到最佳化的设计了。

实际上Burst的方式也有一些细节是值得注意的。

每隔100ms连出10个开关和每10ms出一个开关,看起来平均频率是一样的,但转换效率会不会有差别呢?注意是会有一些区别的。请关注下面的测试Data!!

注意:FLY电源中,有RCD钳位电路中的能量每次Burst都是充满再放完的,这样的话连续出的开关数多一点会比较好。

LLC的情况会不一样,因为LLC的Burst基本前一两个周期把能量已经都输出来了,后面再开关基本上只剩励磁电流了,换句话说后面出的开关都是在做无用功,除了产生开关损耗外没别的了。这样就是连出的开关数少一点会比较好!!

6.变压器的损耗

由于待机时有效工作频率很低,并且一般限流点很小,磁通变化小,磁芯损耗很小,对待机影响不大,但绕组损耗是不可忽略的。

变压器绕组引起的损耗;

绕组的层与层之间的分布电容的充放电损耗(分布电容在开关MOS管关断时充电,在开关MOS管开通时放电引起的损耗。)

当测试mos管电流波形时,刚开启的时候有个电流尖峰主要由变压器分布电容引起。改善方法:在绕组层与层之间加绝缘胶带,来减少层间分布电容。

7.开关管MOSFET上的损耗

mos损耗包括:导通损耗,开关损耗,驱动损耗。其中在待机状态下最大的损耗就是开关损耗。

改善办法:降低开关频率、使用变频芯片甚至跳频芯片(在空载或很轻负载的情况下芯片进入间歇式振荡)

8.整流管上的吸收损耗

输出整流管上的结电容与整流管的吸收电容在开关状态下引起的尖峰电流反射到原边回路上,引起的开关损耗。另外还有吸收电路上的电阻充放电引起的损耗。

改善方法:在其他指标允许的前提下尽量降低吸收电容的容值,降低吸收电阻的阻值。

当然还有整流管上的开关损耗、导通损耗和反向恢复损耗,这应该在允许的情况下尽量选择导通压降低和反向恢复时间短的二极管。

9.输出反馈电路的损耗

比如客户有实际的具体需求:

A.Testevaluation

Test ambienttemperature:25℃

AC input (ACIN): 230VAC

Loadrequirement: 12V/10mA (Electronic load)

Power supply work;TV motherboard no power supply

Standby power:    <0.3W  (< 0.28W best)

B.The wholeMachine system Test and evaluation

Test ambienttemperature:25℃

AC input (ACIN): 220VAC (Applied voltage rating according to product)

The system is on STBthrough the main board: V-STB=9V

Mainboard power 5V/ 3.3V

Test System powerconsumtion: <0.3W

注意:原边反馈和副边反馈的芯片在待机功耗上的表现也是有所区别的;

原边反馈的好处是省了光耦和TL431,但可以说的优势就是降低了空载损耗,因为光耦和TL431也都会让系统有损耗!

上面是一个典型的副边反馈的配置,空载状态下典型的偏置电流都在500uA-1mA之间,那么假设副边和辅助绕组的供电都是12V的话,这里就产生了10-20mW的损耗!记住还要考虑转换效率!!如果降低到如上图的9V输出的话,就会再降低点功耗啦!!!目前是我们通用的设计方法!!!!

有人说减小偏置电流来降低这部分损耗,但是别忘了,满载时的偏置电流空载时还要小很多。这样做可能会影响整个的环路的稳定性能!需要慎重!!


10.RCD吸收分析

RCD是比较常用的吸收电路,主要是吸收漏感的能量以限制开关管上的尖峰电压。相信大家都清楚,RCD如果做的太强的话会对效率有很明显的影响,那自然也会影响轻载效率和待机功耗。

如果考虑到待机状态下电源都是工作在极低频率的Burst状态下的话,实际上C的大小对待机功耗的影响比R要大得多,因为每次C都会充满再放光的。这部分能量就像一个假负载挂在那里 一样,后面用测试Data来进行评估!

从这个角度出发有一种做法是把C彻底拿掉,用一个TVS来代替这样就拿掉了这个假负载!

下面我再来对实际的应用产品进行测试数据给出参考Data!!

说明调测待机功耗时=与下列参数有关:系统功率接近75W设计!

A.VCC绕组空载的最低电压,辅助绕组的限流电阻(绕组端)决定IC的空载电压过低IC-HV会启动影响待机功耗,过高负载电阻会消耗功耗,推荐10V-VDD;

B.注意TL431的补偿参数的影响

C.PC817B/A: 考虑光耦的电流传输比问题

D.RCD吸收回路中;电容C=2200PF常用,C略大会增大待机功耗(比如4700PF)

E.MOS管的限流功率电阻:取值要求90VAC输入时 1.3倍的过载保护设计!

最后一项会决定待机的脉冲的间隔时间空载的间隔时间>10mS(基本要求)

注意检查待机功耗时;25KHZ的的脉冲数要小于5根 空载间隔时间>10mS

2根脉冲就将待机调到极限!12V输出带10mA负载间隔时间>5mS(基本要求)

2.实际的数据测试参考(TL431及光耦设计电路标准化)保证可靠性前提!!

A.RCD吸收电路C=2200PF 电阻R=100K/2W

CH1:VDD(IC) CH2:DRV(IC)CH3:CS(IC)  5根脉冲;间隔时间14.58Ms

B.RCD吸收电路C=4700PF 电阻R=100K/2W

CH1:VDD(IC) CH2:DRV(IC)CH3:CS(IC)  5根脉冲;间隔时间14.38Ms

C.RCD吸收电路C=2200PF 电阻R=100K/2W 12V/10mA

CH1:VDD(IC) CH2:DRV(IC)CH3:CS(IC)  5根脉冲;间隔时间5.568Ms  

D.RCD吸收电路C=4700PF 电阻R=100K/2W 12V/10mA

CH1:VDD(IC) CH2:DRV(IC)CH3:CS(IC)  5根脉冲;间隔时间5.4720Ms

我通过简单的实战测试提供对FLY-开关电源系统的待机及轻载时的功耗进行测试,可以快速指导优化无负载及极轻负载的功耗分析思路!如果你想追求极限可以通过理论加实践试试吧!!

更多技术设计应用及技术交流;请关注阿杜老师!


声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 测试
  • 测量
  • 示波器
  • 探头
  • 示波器的供电接口的“地”到底要不要拔掉?

    相信很多小伙伴都这么干过,把示波器的供电接口的“地”拔掉,如下图:核桃一开始也不明白,为什么要把“地”给拔掉!

    昨天
  • 示波器x10探头的补偿原理

    工欲善其事必先利其器,而示波器正是我们最常使用的测试工具了,值得花一些时间了解清楚探头补偿的工作原理。

    04-03
  • 保护CT和测量CT总是被搞混?

    很多人常常把计量CT、保护CT和测量CT这三种搞混,没办法准确地根据不同用途,选出合适精度的CT

    04-01
  • 刹车片应如何检查与更换

    刹车片的寿命很难用一个明确的公里数或者时间去界定。 出现以下情况需要换刹车片: 1、看厚度:通常情况下一副全新的刹车片厚度在1.5cm左右,当肉眼观察到刹车片厚度小于0.5cm的时候,就要准备更换了。每个刹车片的...

    02-28
  • 放电机是什么?通过什么原理实现的?

    放电机是在一定介质中,利用两极(工具电极与工件电极)之间脉冲性火花放电时的电腐蚀现象对材料进行加工,以使零件的尺寸、形状和表面质量达到预定要求的加工方法。这种加工方法也被称为放电加工或电蚀加工也叫放电...

    02-28
  • 如何使用电机驱动分析仪进行电机运维?

    电机的重要性自动化系统中,电机消耗了所有发电量的65%以上。电机的输出能力从几毫瓦到数千千瓦不等。由于电机执行基本工作并消耗大量功率,因此必须以最具生产力和效率的方式对其进行控制。了解电机如何...

    02-20
  • 万能表怎么用的?

    使用前应认真阅读有关的使用说明书,熟悉电源开关、量程开关、插孔、特殊插口的作用。 将ON/OFF开关置于ON位置,检查9V电池,如果电池电压不足,将显示在显示器上,这时则需更换电池。如果显示器没有显示,则按以下...

    01-14
  • 三相电机机械

    三相电机在一般机械电气设备使用最广,对一台电机来说,如何判定其是否是好的,我们要借助一些仪表和工具来进行检测。首先观察外观,如果外观没问题,轴能正常转动无卡滞就进行下面的检查了。 1、用绝缘电阻表测量...

    01-14
  • 报警阀组的分类及组成

    1 报警阀组的分类及组成 报警阀组分为湿式报警阀组、干式报警阀组、雨淋报警阀组和预作用报警装置。 报警阀组的分类及其主要组成部分如下图: 2 报警阀组设置要求 1.自动喷水灭火系统应设报警阀组。保护室内钢屋架...

    01-14
  • 什么是相位噪声?

    相位噪声基础

    01-03
  • 什么是激光测距系统?应用原型平台介绍

    什么是激光测距系统?LiDAR是"Light Detection and Ranging"的简称,是指一边扫描激光,一边照射对象物,通过观测反射光,测量与对象物的距离的光传感器技术。如下表所示,测距传感器有各种...

    2024-12-09
下载排行榜
更多
评测报告
更多
广告