氧化锆氧量分析仪10个问答让你明白
网络整理 2022-09-28

氧化锆氧量分析仪十问十答是原创文章,文章内容涵盖氧化锆氧量分析仪安装、调试、校验和应用等专业知识,用户在投用好氧化锆分析仪之间最好详细阅读本文。
艾默生6888氧化锆分析仪
1、氧化锆氧量分析仪投用后,为什么不能立即进行校验?
答:这是因为冷机投运24小时内,指示是不正常的,投用一天后,再用标气进行校准。这是因为,冷机检测器或新装检测器内会存在一些吸附水分或可燃性物质,热机后,在高温下,这些吸附水分蒸发,可燃性物质燃烧,会消耗参比侧电池中的参比空气,导致参比空气的氧含量低于正常值20.6%,会出现检测器信号偏低,甚至出现负信号,造成测量的氧含量值偏高,甚至大于20.6%的现象,这时的测量值是不准确的。应该等到检测器内部的水分和可燃性物质被新鲜空气置换干净后,才能使测量准确。所以,氧化锆氧量分析仪至少需要热机一天以上才能进行校准。

2、为什么需要定期对氧化锆氧量分析仪进行校准?
答:氧化锆氧量分析仪在使用过程中存在许多干扰因素,如锆管的老化、积灰、SO2和SO3对电极的腐蚀等。运行一段时间后,仪器的性能会逐渐变化,给测量带来误差,因此必须定期进行!校准周期通常为1-3个月,这要看氧化锆氧量分析仪的使用环境和使用情况而定。

校准时,不能使用纯N2作为零点气,通常零点气应为满量程的10%;量程气是满量程的90%;氧化锆氧量分析仪现场采用的是干燥空气作为量程气;零点气则采用100PPM O2,这是考虑到,零点100PPM以下,标气误差对氧化锆氧量分析仪的影响太大且校验吹扫时间太长,又不易吹到位;测量值采用测量线性的下延线。实践证明,制造有限公司的选择是明确而有效的!

3、为什么氧化锆氧量分析仪不要轻易开关?
答:原因有二:一是由于氧化锆管是一根陶瓷管,虽然有一定的抗热振性能,但在停开过程中,因急冷、急热等温变大而可能导致锆管断裂,因此,最好少做一些无谓的停开操作;二是涂敷在锆管上的铂电极与氧化锆管间的热膨胀系数不一致,使用一段时间后,容易在开停过程中产生脱落现象,导致探头内阻变大,甚至损坏检测器。停机要慎重!
日本横河氧化锆分析仪
4、如何进行氧化锆检测器恒温的判断?
答:进入菜单,检查检测器温度与电压是否一致,这有助于判断加热和温控系统是否正常。当检测器温度远高于恒定温度,则说明断路。因为转换器内设有断偶保护电路,一旦热电偶断路,它将产生一个毫伏信号代替热电偶信号,使检测器温度显示偏高,并使加热电源断开以保护检测器不至于烧坏。此时,虽然温度超高,实际上电炉并未加热,测量热偶两端电阻(必须断开引线)可以证实这一点,热电偶正常电阻应小于20欧姆。若检查了发现温度低于恒定值,这应考虑加热没进行或加热丝断或温控系统故障与损坏。

5、氧化锆氧量分析仪测量值偏高怎么办?
答:前段因素不考虑,首先要考虑检测器入口漏气;氧化锆氧量分析仪长期未校准或校准不当。

6、氧化锆氧量分析仪测量值偏低怎么办?
答:
氧化锆氧量分析仪示校准或需要校准;样品气中含有可燃性气体;放空管线背压大;

7、氧化锆氧量分析仪测量值波动大怎么办?
答:
氧化锆检测器老化,内阻大、电极接触不良;样品气中有湿度大或有水滴,在检测器内气化;

8、氧化锆氧量分析仪测量值极限漂移,信号超量程怎么办?
答:氧化锆
检测器有部件损坏,如锆管断裂、电极引线开路、检测器老化、温度补偿电阻断裂(氧含量100%);
一体式氧化锆分析仪
9、氧化锆探头老化的原因和症状有哪些?
答:通常我们所指的探头老化是指氧化锆检测器的老化,主要表现在内阻升高和本底电势增大这两项上:
①内阻升高
实际运用中,探头老化引起的内阻增大较多。内阻是指信号线两端间的输入电阻,它是引线电阻、电极与氧化锆间界面电阻及氧化锆体积电阻三部分之和,因此,电极挥发、电极脱落和氧化锆电解质的反稳(由稳定氧化锆变为不稳定氧化锆),都将引起内阻升高。测量检测器内阻,可以判断其老化情况。根据经验,当内阻增大到接近其使用极限时,将出现信号大跳动现象,有些反应为响应迟缓的现象。对于这些检测器,其本底电势不一定很大。
②本底电势增大
本底电势是电池附加电势。引起本底电势增大的因素有两种:一种属于永存因素,它寄生的电池上,如SO2和SO3的腐蚀作用、电池不对称因素;另一种属于暂存因素,如电极各灰、空气对流差等因素,一旦条件改善,本底电势便可降低。
本底电势的变大,往往反映检测器的老化程度,当E0值超过氧化锆氧量分析仪的最大调节量时,就说明检测器已经损坏。举个例子:一个氧化锆,出厂时的E0为-5mV,其允许变化范围为0~-30mV,使用半年后,变为-13mV;使用18个月后变为:-29mV;这种情况就表明,此检测器已经老化,需要更换。
需要注意的是,有些检测器的老化表现在本底电势变大上,而有些检测器虽然老化,但却没有这种现象,所以我们需要认真分析对待。当本底电势变大的原因是由暂存因素引起时,随着使用时间的推移,则有可能出现本底电势先变大,再变小的现象。由于本底电势增大而导致探头老化的数量比内阻增大数量要少,单纯本底增大,一般不会出现信号跳动大的现象。

10、氧化锆氧量分析仪使用时需要注意什么?
①需要对样品气进行控压处理,通常进氧化锆氧量分析仪压力不得大于0.05MPa;
②标气二次表输出压不得大于0.30MPa;
③进入氧化锆氧量分析仪的所有气路管线都必须经过严格的查漏,微小的泄漏都会使环境空气中的氧扩散进来,从而使测量数值偏高。虽然在测量中,样气压力大于环境压力,但样气中的氧是微量级的,根据法拉利定律,氧的分压与其体积含量成正比,大气中含有约为21%的氧,与以PPM计算浓度的样气的氧分压相差一万倍左右,因而气样中微量氧的分压远低于大气中的氧分压,当出现泄漏时,大气中的氧便会从泄漏部位迅速扩散进来。还有,取样管线应尽可能短些,接头尽可能少,要保证接头及阀门密封良好,管线连接完毕后,应做气密性检查。气密性检查的要求:0.25MPa测试压力下,30分钟,压降不大于0.01MPa。查漏工作在仪器正常工作时,每半年还必须进行一次系统查漏。
④管线材质基本上以铜质或不锈钢管线为好,次选聚四氟乙烯管。禁选乳胶管、白胶管之类管材,其气密性和材质抗渗透性太差,测量微量氧在标准测量压力下误差太大。管线外径通常我们选择6毫米或1/4IN,也有选择3毫米或1/8IN,总之,首选不锈钢管,清洗、脱脂,保持管内壁光滑洁净,对于痕量级(<1PPMV)氧的分析,应选择内壁抛光的不锈钢管。所选择的阀门、接头,死体积应尽可能小。
⑤定期清洁氧化锆氧量分析仪风扇过滤网,每季度一次;环境恶劣,需要经常清理,以防止因通风不畅而导致的仪器过热现象;
⑥氧化锆氧量分析仪的安装部位应当水平,远离振动源;以防止检测器不水平,而造成的样品对流不均所引起的误差;
⑦氧化锆氧量分析仪周围环境要求通风良好,切忌密闭空间,因氧量不均衡而引起的测量误差;
⑧为防止样品中的水分在管壁上冷凝凝结,造成对微量氧的溶解吸收,应根据情况对取样管线采取绝热保温或伴热保温措施。检测液氮中的微量氧时,尤其要注意加温措施,不然,由于氧沸点低于氮沸点13度,样品气不均匀气化,会使测量值严重偏低。
⑨气路进氧化锆氧量分析仪前,必须经过物理过滤器,10u;发现气阻现象,可先行检查过滤网(过滤器);当测量含有腐蚀性气体时,应先用活性炭过滤。
⑩为防止样品中的水分在管壁上冷凝凝结,造成对微量氧的溶解吸收,应根据情况对取样管线采取绝热保温或伴热保温措施。检测液氮中的微量氧时,尤其要注意加温措施,不然,由于氧沸点低于氮沸点13℃,样品气不均匀气化,会使测量值严重偏低。
⑪原则上,微量氧分析仪的测量位应尽可能与测量单位接近,以避免过长的管线和过多的不确定因素,影响测量数据的可靠性。
⑫样品气中不能含有油类组分或固体颗粒物,以免引起渗透膜阻塞和污染。
⑬样品气中不应含有硫化物、磷化物或酸性气体成分。这些组分会对燃料电池,特别是碱性燃料电池造成危害。
⑭由于检测是在高温下操作,若待测气体中含有H2和CO、CH4时,此物质会与氧发生反应,消耗部分氧,氧浓度降低,引起测量误差。所以氧化锆氧量分析仪在测量含有可燃性物质的气体时应相应考虑此项因素,以避免测量失准。

以上知识是在大量用户使用氧化锆氧量分析仪过程中总结和整理的,转载请注明原文出处!

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 测试
  • 测量
  • 示波器
  • 探头
  • 浅谈电流消耗和压降的电流检测方案

    与十年前相比,现在的电子产品具有更多的功能。工程师们不得不设计精密的系统,常以“创造性”满足严格的功率预算,以保持高能效。预测系统的维护和保护需要快速反应系统的

    昨天
  • 锂电池电池容量与放电平台的理解

    我们现在设计电子产品,很多时候也用锂电池供电,同手机或者平板电脑用锂电池供电一样,熟悉了解锂电池容量的学问,也许对使用和设计锂电池供电包括设计电池充电器来说,很

    昨天
  • 全球趋势下无线嵌入式系统的系统级设计和检验

    Darren McCarthy,泰克公司   设计和采样无线系统,以便能够用于世界不同地区,带来了一个重大挑战。如果大家能够就使用的频率、调制类型、功率电平和带宽达成一致,结果不是很好吗?遗憾的是,这们生活的世界并不是这样的,无线电法规在不同地区之间变化很大,特别是没有牌照的无线电控制和遥测应用使用的部分频率。   对某些应用来说,在2.4 GHz上运行的标准化无线电 (如蓝牙、ZigBee或Wi...

    前天
  • 射频芯片测试夹具在微波测量中的应用

    微波测量就是利用测量仪器对微波进行定量实验的方法。在微波元件、器件和微波设备的生产过程中,有许多环节需要微波测量对其零部件、半成品和成品进行检验,在设计时也需要利用微波测量获得必要的数据。微波测量所需获得的数据包括:基本参量-频率(或波长)、驻波比(或反射系数)、功率。原则上其他参量都可以由此三个基本参量导出;其他参量-衰减、阻抗、相位、散射、谐振、交调、介电常数、品质因数等等。现有的微波测量仪表...

    前天
  • 3dB电桥的无源互调测量

    文:澳华测控技术有限公司简介3dB电桥的互调测量有其特殊性。当测量过程不正确时,这些器件会产生一些可以接受的无源互调失真;当这些器件安装在基站后,它们又会降低通话质量和基站的系统容量。图1所示为一个典型的3dB电桥。图1.3dB电桥示意图在这个简单的框图中,有四个无源互调失真源。 埠1埠2 结合点 埠3 埠4每个互调源产生的互调组成了器件的总体互调失真。每个端口都会产生互调信号(不必是等...

    前天
  • 信号源分析仪瞬态测试应用—锁相环的跳频测量

    安捷伦科技射频微波应用工程师--吴辉E5052B上的瞬态测试功能是分析信号时域变化的强大工具,用户可以利用该测试功能分析其信号的频率,幅度,相位的时域变化。瞬态测量方式有窄带(narrowband frequency)及宽带(wideband frequency)两种:1)窄带频率模式的最大可测量频率变化是80MHz(载波大于800MHz时),频率分辨率高(可至mHz),可对80MHz范围内的小频...

    前天
  • 每位工程师在使用示波器进行功率测量时都必须知道的7大秘诀

    第 1 个秘诀通过计算平均值提高测量分辨率在某些功率测量应用中,您需要测量大动态范围的值,同时还需要细致地调整分辨率,以测量参数的微小变化。除了使用高分辨率数字转换器之外,您也可以使用其他采集方法来降低随机噪声,增加测量的有效动态范围。例如求平均值和高分辨率采集。求平均值要求测量的是重复信号。该算法对跨越多次采集的各时间段内的点求平均值。这样可以降低随机噪声,为您提供更卓越的垂直分辨率。垂直分辨率...

    前天
  • RF WCDMA基准比较测试白皮书

    概览通过与传统的仪器进行比较,了解软件定义的PXI RF仪器在速度上的优势。如WCDMA测量结果所示,基于多核处理器并行执行的LabVIEW测量算法与传统仪器相比可以实现明显的速度提升。  介绍你在早晨7:00伴着摇滚音乐的声音醒来,收音机闹钟里的RDS接收器提示你正在收听来自Guns N’ Roses 乐队的Welcome to the Jungle。然后,在你品尝咖啡期时,可以在书房通过WLA...

    前天
  • NI 5665与传统仪器对比演示-设置与细节

    概览本文讨论了巅峰对决:NI 5665 与传统台式仪器对比 这一视频中所演示的设置细节。在此演示中,比较了NI PXIe-5665与Agilent PXA的测试性能与速度。视频并不是关于两个仪器的技术指标对比,而是现场测试的对比。  硬件设置在LTE和WCDMA测试中,使用了NI PXIe-5673矢量信号发生器。滤波器仅用于WCDMA信号,以尽量减少本底噪声。在线性度测试中,使用了两个CW信号源...

    前天
  • 分析混合信号示波器加速复杂系统测试应用

     当代电子电路设计中,特别是嵌入式电路设计,面临很多新技术的挑战,如:更多的总线应用,更高速的时钟和数字信号,集成度更高的PCB设计,很多设计中还融入了RF功能。面对这样的设计工作,工程师需要相应的测试手段和工具,来完成比以往更加复杂的测试任务。为了解系统的整体工作特性,工程师只有同时测量模拟、数字信号,甚至包括总线信号,才能了解系统故障的原因和掌握信号和指令的时序和逻辑关系。  在许多复杂的测试...

    前天
  • 基于NI PXI和LabVIEW缩短RF功率放大器的特征化时间

    挑战:在不牺牲测量精度或提高设备成本的情况下,缩短对日益复杂的无线功率放大器(PA)的特征化时间。解决方案:使用NI LabVIEW软件和NI PXI模块化仪器开发功率放大器特征化系统,让我们在减小资产设备成本、功率消耗和物理空间的同时,将测试吞吐量提高了10倍。TriQuint是一个高性能射频解决方案的领导者,其产品涉及复杂移动设备、国防与航天应用以及网络基础设施等方面。现在,TriQuint通...

    前天
下载排行榜
更多
广告