天线近场测量的综述
微波射频网 2023-03-17

一、引言

天线工程一问世,天线测量就是人们一直关注的重要课题之一,方法的精确与否直接关系到与之配套系统的实用与否。随着通讯设备不断更新,对天线的要求愈来愈高,常规远场测量天线的方法由于实施中存在着许多困难,有时甚至无能为力,于是人们就渴望通过测量天线的源场而计算出其辐射场的方法。然而由于探头不够理想和计算公式的过多近似,致使这种方法未能赋于实用。为了减小探头与被测天线间的相互影响,Barrett等人在50年代采用了离开天线口面几个波长来测量其波前的幅相特性,实验结果令人大为振奋,由此掀开了近场测量研究的序幕,这一技术的出现,解决了天线工程急待解决而未能解决的许多问题,从而使天线测量手段以新的面目出现在世人的面前。

四十多年过去了,近场测量技术已由理论研究进入了应用研究阶段,并由频域延拓到了时域,它不仅能够测量天线的辐射特性,而且能够诊断天线口径分布,为设计提供可靠、准确设计依据;与此同时,人们利用它进行了目标散射特性的研究,即隐身技术和反隐身技术的研究,从而使该技术的研究有了新的研究手段,进而使此项研究进入了用近场测量的方法对目标成像技术的探索阶段。

二、近场测量技术发展的过程

近场测量的技术研究从五十年代发展至今,其研究方向大致经历四个阶段,如表1所示。

表1 近场测量技术所经历的时间

时间 研究方向
1950-1961 无探头修正的实验探索阶段
1961-1965 探头修正理论的研究阶段
1965-1975 实验验证探头修正理论阶段
1975-至今 技术推广阶段

1、理论研究

在Barrett等人的实验之后,Richnlond等人用空气和介质填充的开口分别测量了微波天线的近场,并把由近场测量所计算得到的方向图与直接远场法测得的结果相比较,其方向图在主瓣和第一副瓣吻合较好,远副瓣和远场法相差较大。于是人们就分析其原因,最终归结为探头是非理想起点源所致,因此,出现了各种方法的探头修正理论。直到1963年Karns等人提出了平面波分析理论才从理论上严格地解决了非点源探头修正的问题。与此同时,Paris和Leach等人用罗仑兹互易定理也推出了含有探头修正的平面波与柱面波展开表达式[1,2]。Joy等人也给出了含有探头修正下的球面波展开式及其应用[3]。至此,频域近场测量模式展开理论已完全成熟,因此研究者的目光投向了应用领域。在随后的十年里,美国标准局(NBS)等研究机构进行大量的实验证明此方法的准确性[4],其中取样间隔、探头型式的选择以及误差分析是研究者们关心的热门问题。

2、取样间隔及取样间距

由于模式展开理论是建立在付里叶变换的基础上,根据付里叶变换中抽样定理[5],对带宽有限的函数。用求和代替积分,用增量代替积分元不引人计算误差,而平面、柱面、球面的模式展开式对辐射场而言都是带宽有限的函数,忽略探头与被测天线间的电抗耦合(取样间距选取的准则),取样间隔与取样间距按表2所示的准则进行选取(参看图1坐标系)。

表2 取样间隔与取样问距的准则

表中:λ —工作波长;d—探头距被测天线口径面的距离;α—完全包围教测天线最小柱面或球面的半径;α'—极平面取样的最大圆半径.

如果d变小,则取样间隔可按下式计算[6]

(1)

若d≤λ/2,则取样间距应取为小于λ/4,这时可用有限频谱法[7]修正感应场对测量数据的影响。

取样面尺寸与被测天线的口径面大小有关。对于一维平面扫描的情况,取样面的尺寸Lx与口径面尺寸D有如下关系,参看图2。

(2)

只要d选定,θ可由测量精度求得[5],则Lx是确定的。通常工程上要求和幅度方向图副瓣电平测量误差≤0.5dB,在此条件下,取样面的尺寸可按下式选取(d≥λ)

图1 表2所用的坐标系

图2一维平面扫描取样面与被测天线口面尺寸的几何关系

Lx=2X|E=-40dB (3)

式中,X|E=-40dB为低于取样面中心场强40dB处的位置坐标,其它情况依次类推。


1
声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 测试
  • 测量
  • 示波器
  • 探头
  • MOSFET/IGBT的开关损耗测试

    MOSFET/IGBT的开关损耗测试是电源调试中非常关键的环节,但很多工程师对开关损耗的测量还停留在人工计算

    昨天
  • 如何测量LDO 产生的噪声?

    噪声分为两类:内部噪声和外部噪声。内部噪声是不可避免的,每个电子设备都会产生内部噪声。LDO 由理想的源供电

    06-05
  • 电池基本原理及基本术语

    电池(Battery)指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的部分空间,能将化学能转化成电能的装置。具有正极、负极之分。随着科技的进步,电池泛指能产生电能的小型装置。

    06-02
  • 光伏发电中的高电压穿越测试、穿越能力验证

    当电网发生故障或扰动引起电压升高时,在一定的电压升高范围和时间间隔内,光伏发电站可保证不脱网连续运行。PA系列功率分析仪具有快达200KS/s的实时录波,可检测

    06-02
  • 示波器的选型:采样率,带宽该注意些什么?

    示波器的选型示波器是电子工程师经常使用的一个产品,但是我们很多人对示波器的采样率和带宽和存储深度这些定义很多

    05-31
  • 纹波产生的原因以及纹波的测量

    什么是纹波:纹波(ripple):是附着于直流电平之上的包含周期性与随机性成分的杂波信号。指在额定输出电压、

    05-31
  • FLY高低压输出-以FLY为例来进行理论和实际的测试分析

    现在的电子产品&设备,我们应用开关电源方式除了效率以外,空载或者待机功耗也变得越来越重要了!这不仅是因为各种各样的能效标准的执行,也符合实际应用的需求;特别对于

    05-30
  • 了解不同型号示波器的噪声特性

      所有示波器在模拟通道与数字转换过程中都会产生垂直噪声,这是不可避免的。很多用户在购买示波器时都忽略了这一重要参数,甚至示波器厂商也都刻意回避这个指标,数据手

    05-29
  • 六条基于示波器使用者的常见问题分享

      示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图象,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子

    05-28
  • 如何实现高精度直流电压的测量

      一位同事曾经问道,“测试中我该如何测量微伏电压?”高精度直流电压测量可能十分复杂。测量过程中,时间就是金钱。因此,实现快速准确的测量一直是一项挑战。  传统

    05-28
  • 分析万用表知识(超级全)

    万用表是电子爱好者最常用的测量仪器之一,是一种集成多种常用电学测量功能的仪器。如今不少万用表都向智能化方向发展,市面上的万用表种类、功能都较多,如何选择一款适合

    05-27
  • 一文全面分析电工常用的仪表使用方法及注意事项

      本文介绍几种电工常用的仪表使用方法及注意事项,主要有万用表、欧姆表、电压表、电流表、电阻测量仪等的简单介绍。  一、万用表的使用方法  万用表能测量直流电流

    05-27
下载排行榜
更多
广告