四大创新未来对雷达技术产生的影响
mouser 2021-09-18

概览

电磁频谱是战争领域中争议越来越大的话题。 电子对抗措施日益复杂,探测第五代战斗机变得更加困难,大多数世界主要大国正大力投资到网络战技术,以便未来成为这一领域的主导者。 此外,随着蜂窝电话供应商开始推出5G,汽车制造商推动V2X通信,以及物联网将无线连接推向无数设备,频谱的商业用途呈指数级扩展。

这种演变为设计和测试情报、监视和侦察(ISR)系统的科学家和工程师带来了新的挑战。 但这些挑战也为创新提供了机会,因为这要求工程师使用更具成本效益和时间效益的方法开发日益复杂的系统。

然而,支持这些复杂系统的基础技术也在不断发展来应对这些挑战。 作为雷达设计和测试仪器和设备的厂商,NI认为以下四大创新将在未来几年内对雷达技术产生最大的影响。

目录

1、氮化镓应用于前端组件
2、高速数据转换器用于信号收发
3、不断发展的FPGA技术应用于认知技术
4、高带宽数据总线应用于传感器融合
5、借助模块化的COTS仪器,将所有功能结合在一起

氮化镓应用于前端组件

氮化镓(GaN)被认为是自硅以来影响最大的半导体创新产品,该材料能够在比传统半导体材料高得多的电压下工作。 更高的电压意味着更高的效率,因此基于GaN的RF功率放大器和衰减器具有更低的功耗,且产生热量更少。 随着越来越多使用GaN的RF元件供应商为市场提供适用于生产的可靠产品,基于GaN的放大器日益普及。

该技术对于有源电子扫描阵列(AESA)雷达系统的发展非常重要。 AESA是完全有源的阵列,包含数百甚至数千个天线,每个天线都有其相位和增益控制。 这些雷达系统使用相控阵发射器和接收器,以电子方式操纵波束而无需物理移动天线。 与其他传统雷达相比,这些类型的雷达系统因其更高的目标功率、空间分辨率和鲁棒性而日益普及。 例如,如果阵列中的某个元件发生故障,雷达仍可以继续工作。 GaN放大器在AESA雷达中的应用日益增加,提供了更好的性能,可在更小的外形尺寸和更低的冷却需求下实现相同的输出功率。

“图1.图1. AESA雷达架构

随着基于GaN技术的应用和解决方案变得更加先进,将组件级测试结果与系统级测试结果相关联变得更加重要。 使用矢量网络分析仪的传统元件测试方法可提供正向和反射增益和相位的精确窄带视图。 然而,这种传统方法中的连续波(CW)激励并不能准确反映元件最终使用的实际信号环境。 作为替代方案,您可以利用矢量信号分析仪和矢量信号发生器的宽带灵活性来创建更能代表真实世界的应用及其环境的脉冲和调制激励信号。 此功能与S参数分析的组合已经成为越来越具有战略意义的组件级测试方法。

高速数据转换器用于信号收发

转换器技术每年都在不断进步。 现在在同等分辨率下,来自主要半导体公司的模数转换器(ADC)和数模转换器(DAC)的采样率比五年前的转换器要快好几个数量级。 这些高速ADC的分辨率提高也为雷达提供了更高的动态范围和更宽的瞬时带宽。 动态范围是决定最大工作范围的关键要素;例如,它使第五代战斗机(如F-35)能够识别更远的目标。 更高瞬时带宽提供了诸多好处,包括通过脉冲压缩增加空间分辨率以及实现低截获概率(LPI)雷达等高级技术。 更高带宽带来的另一个趋势是传感器融合。使用传感器融合技术,您可以对单个信号链进行多个功能操作。 例如,通过将多个频段上不同类型的波形分离开,宽带传感器可以同时用作为通信系统和雷达。

此外,许多半导体公司正在发布称为“直接RF采样转换器”的ADC和DAC,例如TI ADC12DJ3200,能够以高达6.4 GS/s的速率采集数据。 RF采样转换器此采样率下具有12位分辨率,可以直接将RF输入信号转换为C频段,而无需上变频或下变频。 随着转换器的不断发展,未来的雷达将受益于C和X频段的直接RF采样。

“”
“图2.外差与直接射频采样架构”图2.外差与直接射频采样架构

直接RF采样架构将彻底改变AESA雷达。 在完全有源阵列中,每个天线元件都需要自己的ADC和DAC。 这意味着如果ADC和DAC无法直接以雷达的工作频率进行采样,则每个发送 - 接收模块(TRM)需要有一级进行上/下变频。 这会增加设计成本、尺寸和性能变化。 而使用直接RF采样架构,就无需再使用混频器和本地振荡器(LO),从而简化了RF前端架构,降低成本、尺寸和复杂性。 基于如此大量的发射器和接收器,直接RF采样架构将可以显着提高通道密度并降低每个通道的成本。

由于采用模块化仪器方法,NI可以在最新转换器广泛应用于商用仪器之前,迅速将其推向市场。 例如,NI最新的FlexRIO收发器采用直接RF采样转换器,采样率最高可达6.4 GS/s。 这有助于研究人员和工程师使用真实的I/O快速进行原型验证,并开发出与当今雷达的尖端性能相匹配的测试平台。 这些设备还能够利用PXI的高级时序和同步背板,在单个系统中实现数十个到数百个通道的相位一致性。

不断发展的FPGA技术应用于认知技术

FPGA技术也在不断发展。 现代FPGA包含更多逻辑,提供更高的每瓦计算能力,并支持高达150 Gb/s的高速数据流和专用IP模块。 当今的高FPGA计算能力为五年前根本无法实现的创新技术打开了大门。

基于新FPGA技术的一个创新领域是机器学习在认知雷达中的应用。 这些技术提高了雷达对环境的响应能力,从而提供更具可操作性的信息。 机器学习并不是运行预编程的模式(比如搜索模式、跟踪模式等),而是允许雷达自动适应最佳工作参数,包括工作频率和波形类型。 机器学习还可实现自动目标识别(ATR)等功能以及基于知识辅助的操作。

“图3.部署在认知雷达的FPGA上的机器学习技术”图3.部署在认知雷达的FPGA上的机器学习技术

虽然国防和航空航天组织多年来一直在使用FPGA技术,但我们所看到的另一个发展是更高级FPGA设计工具的进步。 更高级别的工具可以简化算法从主机到FPGA的迁移,从而提高开发效率,同时在设计中集成底层HDL。 对于LabVIEW FPGA,您还可以通过板卡基础设施(PCI Express、JESD204B、内存控制器和时钟等)的抽象来实现紧密的NI硬件软件集成。 这可以将FPGA开发的重点从板卡支持转向算法设计,从而在不牺牲性能的情况下减少开发工作量。 即使是不具备VHDL或Verilog专业知识的软件工程师和科学家,或者面临紧迫时间进度的硬件工程师,更抽象的FPGA工具都可以帮助大幅缩短开发周期。

高带宽数据总线应用于传感器融合

另一个关键趋势是在将高带宽传感器数据传输回集中处理器进行计算时,PCI Express Gen 3,40/100 GbE、光纤通道和Xilinx Aurora等高带宽数据总线的重要性日益凸显。 例如,F-35的集成核心处理器集合来自多个ISR传感器的数据,以便对这些数据进行集中处理。 这有助于提高飞行员的情境感知能力。 这一趋势的核心是高速串行收发器技术(也称为多千兆位收发器或MGT)的发展。 近年来,该技术发展迅速,目前的线路速率达到每通道32 Gbps; 56 Gbps PAM4即将问世。 FPGA通常被认为是处理资源,但它们也包含一些最复杂的MGT,这使它们成为传感器开发的理想终端。

“图4.聚合来自多个ISR传感器的数据,以便使用高速数据总线进行集中处理”图4.聚合来自多个ISR传感器的数据,以便使用高速数据总线进行集中处理

使用模块化仪器的优势在于,随着处理能力和带宽的迅速增加,系统可以更容易地升级。 PXI平台特别适用于需要高带宽数据流和集成定时和同步的系统。

借助模块化的COTS仪器,将所有功能结合在一起

随着这些基础技术的快速发展,雷达技术和架构的复杂性和性能都在不断提高。 随着技术的不断发展,系统必须不断发展以跟上步伐。 实现所需定制和性能的唯一可行选择似乎是让内部设计人才基于内部知识,在公司内部为雷达原型和测试系统开发完全定制的硬件和软件。 但是,这些解决方案还伴随有长期维护责任和高机会成本。

随着FPGA的出现以及模块化新型转换器和数据流技术的快速采用,COTS解决方案不仅可以满足规范要求,还可以提供灵活性,确保系统具备长寿命周期所需的耐用性。 通过将这些技术快速整合到模块化的COTS设备中,NI可帮助工程师轻松满足先进雷达系统不断变化的要求,同时满足严格的时间表和预算。 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • RF
  • 射频
  • 通信
  • 无线
  • 5G地铁场景创新组网方案原理及方案试点

    一、方案背景 进入5G时代后,手机终端天线主要是2T4R/4T4R配置,因此,在一些重要的场景,5G基站、5G室内分布系统必须达到4路以上射频发射通道(即:信源侧至少能满足4T) ,才能使 5G 手机体验到四通道下载速率。但是,在一些存量室内分布系统中, 目前的硬

    05-11
  • 5G NSA向SA演进,驻留比及感知提升

    一、背景 2021年是 “十四五”开局之年,也是公司深化5G 发展,巩固领先优势的关键之年。随着5G用户发展愈发迅速,在NSA向SA演进过程中,网络面临SA驻留比低、上行速率差、语音感知劣等严峻挑战。 1、SA驻留问题 截至3月底,某地已发展5G终端100万,5G日登网

    05-10
  • 5G 网络改善 NR 边缘覆盖的几个方向

    一、研究背景 作为第五代移动通信技术,相对于4G,5G拥有更高的速率、更低的时延以及更大的连接数,不仅可以进一步提升用户的网络体验,为移动终端带来更快的传输速度,同时还将满足未来万物互联的应用需求, 赋予万物在线连接的能力。但同时由于5G频段较高,

    05-08
  • “传统”通信会被卫星通信网络所取代吗?

    当下,5G已是通信行业里一直在持续的竞争焦点。可就在关于5G的话题不断之时,卫星通信这个“新技术”也悄悄地变成一个热议的焦点。 此前就有马斯克一直在实施的“星链计划”,国内也一直有这样类似的计划。不少相关企业还都发射了先导卫星并进行了相关的验证

    05-08
  • 5G 设备功耗分析及省电方案实施

    1.方案背景 随着5G红红火火的大建设, 5G站点设备越来越多,其功耗经统计约是同等条件下的4G设备的3倍左右,从而带来了各种问题,诸如:电源配套的改造,现有线路的修改,机房的改造,电费的提升等等。所以如何想方设法降低5G设备功耗,对相关投资的降低至关

    05-07
  • 5G上行干扰处理经验总结

    一、问题描述 随着对于移动网运营商而言,频谱资源是其最有价值的资产之一,而干扰是最可怕的敌人之一。随着网络演进,组网结构越来越复杂, 网络中会出现各种各样的信号源。当这些非网络服务信号落入 NR 的上行接收带内时,就会造成网络的上行干扰,大量的网

    05-07
  • 校园 5G 场景解决方案

    一、概述 随着5G规模化建设,各种场景规划建设各有不同特点和需求。校园场景特点: 功能区多,占地面积广,需要室内外协同覆盖;校园5G 业务特点:视频业务占比高,流量飞速增长,话务潮汐效应明显;校园5G建网挑战:功能区多规划复杂、工期不可控、网络维护难

    05-06
  • 电联5G 合建NSA 网络规划和优化

    1、概述 NSA(Non-standalone, 非独立) 组网模式下, 同一 NSA 网络内部必然存在锚点区和非锚点区, 形成 NSA 网络内不同区域之间的边界。而共建共享又新增了承建方、 共享方的维度, 引入新的共享策略配置, 导致网络的结构更加复杂化。共建共享降低 CAPEX

    05-06
  • LTE与NR同频组网场景间同频干扰

    1、背景介绍 5G初期为了快速建网, 在保障4G用户体验需求同时, 快速建起稳定、 高速、 体验优的5G网络, 这时LTE-NR组网就成了建网首选。LTE-NR组网后, 在2.6GHz带宽( 范围[2515,2675]) 为160MHz的连续频谱中, NR会占用频谱范围[2515,2615]的带宽为100MH

    05-06
  • 4G/5G 互操作验证

    — 、互操作策略简介 互操作是基于蜂窝移动通信的移动性管理机制,能够实现网络的业务连续性、提高用户体验以及系统整体性能。而移动性管理主要分为两大类:空闲状态下的移动性管理和连接状态下的移动性管理。空闲状态下的移动性管理主要通过小区选择/重选来

    05-06
  • 5G单验测试配合指导书,要核查些什么?

    一、 上下行速率问题 1、 找 RSRP 好点, 再看有无同频邻区干扰、 D1D2 干扰, 闭站解决。 2、 测试好点要求(5G 覆盖:-65db≥RSRP≥-75db, SINR≥15dbm);下行速率测试利用多径效应, 测试点尽量选择周边有墙壁、 高楼等位置, 多径效应不适用于上行速率

    05-07
  • 一文了解5G SA超级上行频谱

    1.1、背景 当前5G C-Band主要采用TDD组网,即上行和下行时分复用C-Band 频谱资源,一般采用8:2/7: 3/4: 1时隙配比,实际用于上行的时频资源有限,导致用户上行体验不佳。 超级上行通过将上行数据分时在Sub-3G频谱和C-Band频谱上发送,极大地增加了5G用户的上

    04-30
下载排行榜
更多
EE直播间
更多
广告
X
广告