心电监护终端的设计
eeskill 2021-10-20

引言

心脏病是严重威胁人类健康和生命的主要疾病之一。统计显示约60%的心脏病人死于家中,这些病人如果能够及时获得抢救、护理,是完全可能避免死亡的。由于心脏病发作带有很大的偶然性和突发性,将心电监护从病床、医院扩展到社区、家庭实施远程监护,无论是从减轻患者的经济负担,还是从增强医院服务能力的角度考虑都具有重要的现实意义。

2 心电监护终端的硬件设计

从体积小、功耗低、操作简便的角度设计心电监护终端硬件电路。图1为整个监护终端的硬件框图,主要由调理电路、心电数据采集模块、ARM7微处理器模块、网口模块、电源模块5部分组成。该监护终端完成心电信号的采集和预处理,并通过网口实时发送至监护中心服务器,从而实现远程实时监护。

2.1 信号调理电路设计

人体心电信号是一种低频微弱电信号,其幅值约10μV~5 mV,频率范围为0.05~100 Hz。需要放大上千倍(即达到V量级)才便于观察以及A/D转换,具体增益还需结合A/D转换模块的测量范同确定。通过心电导联线获取的心电信号首先经仪表放大器AD620进行差分放大,由于体表液体与电极之间可能形成原电池,致使电极之间存在固定电位差,因此第1级的差分放大增益不能太高,否则容易饱和.所以第1级增益选为20;为了使信号满足A/D转换要求,需将信号放大至V量级,因此设置次级放大增益为30,这里采用普通的四运放LM324。由于心电信号中常混有直流和基线漂移干扰,因此应在第1级和次级放大电路之间加高通滤波器,可有效避免心电信号的基线漂移,相应的高频干扰信号可通过放大器输入端电路和一个截止频率为100 Hz的二阶低通滤波器予以滤除。此外,通过陷波器滤除50 Hz工频干扰。经上述信号处理后,心电信号接入微处理器LPC2210的P0.27引脚(AIN0)由其内部A/D转换模块完成A/D转换。根据采样定理,采样频率应保证高于其2倍,因此在A/D转换中将采样频率设置为500 Hz。图2为信号调理电路。

2.2 ARM7微处理器及外围电路

LPC2210是PHILIPS公司开发的基于一个支持实时仿真和跟踪的16/32位ARM7TDMI CPU的微控制器。该器件具有144引脚封装、极低功耗、多个32位定时器、8路10位A/D转换器、PWM输出以及多达9个外部中断,使其适用于工业控制、医疗系统、访问控制和电子收款机(POS)。

该系统设计的A/D转换部分采用LPC2210自带的8通道10位A/D转换模块,简化电路设计。由于LPC2210无片内Flash,且LPC2210片内SRAM仅有16 KB,考虑到系统中需加载一个嵌入式操作系统μC/OS-II和TCP/IP协议栈,16 KB空间远远不够,所以片外加载一个SRAM IS61LV25616AL和一个Flash SST39VF160,具体电路如图3所示。

2.3 网口电路

由于LPC2210不带以太网接口控制器,因此需增加一块以太网控制器实现以太网传输。目前比较常用的10 Mb/s嵌入式以太网器件有RTL8019、CS8900等,这里选用RTL8019AS。RTL8019AS是一款NE2000兼容的ISA总线以太网控制器,该器件的主要特点为:符合IEEE 802.310 Base2和1OBaseT标准;网络传输速率为10 Mbit/s,支持CSMA/CD传输协议;自动奇偶检测及纠错;支持即插即用方式(PnP)和非即插即用方式(Non-PnP),可通过软件设置中断、输入和输出地址等网络参数;支持两种接口类型,并能自动侦测介质类型,BNC端口用于连接同轴电缆,RJ45端口用于屏蔽双绞线;支持全双工模式;内建16 KB SRAM。

系统中RTL8019AS工作在跳线模式,其基地址为0x300。所以电路上RTL8019AS的引脚SA6,SA7,SA10~SA19均接地,SA9接电源,SA8与LPC2210地址总线A22相连,SA5与LPC2210的外部存储器Bank3片选CS3相连。RTL8019AS与LPC2210的具体连接关系如表1所示。当SA8为1,SA5为0时,选中RTL8019AS,即LPC2210与RTL8019AS之间的映射关系是:0x83400000~0x8340001F,0x300~0x31F。

3 系统软件设计

由于μC/OS-Ⅱ操作系统是源代码公开的、共享的并且可移植性、可裁减性非常好,通过信号、邮箱及队列能够很好的实现任务问的实时通讯、系统同步及多任务间的管理和调度,所以这里选用μC/OS-Ⅱ嵌入式实时操作系统作为平台。

首先进行μC/OS-II的移植,对μC/OS-II的移植实际上就是重写或修改与处理器有关的代码。主要是编写OS_CPU.H,OS_CPU_ A.S,OS_CPU_C.C这3个文件。在完成μC/OS-Ⅱ代码移植后,把TCP/IP协议栈加载到该系统中,即完成程序运行平台的搭建工作。

该系统设计的主程序主要通过3个任务来实现,即在主函数main()中先利用OSInit()初始化μC/OS-Ⅱ操作系统,给应用程序中用到的消息队列、信号量等清零,然后利用OSTaskCreateExt()创建第一个任务task0,通过OSStart()启动操作系统的多任务调度机制,开始运行该系统的主要应用程序。

3个任务中,设置任务task0的优先级最高,任务task2的优先级最低。任务task0主要负责接收数据,调用RTL8019AS的驱动函数Rec_Packet()接收远端计算机的连接请求(本地设置为服务器端)。若有请求帧,则设置消息队列RecTcpQFlag,然后删除任务本身;若没有请求帧,则持续利用Rec_Packet()接收数据,直到接收到连接请求。task0的流程图如图4所示。

该系统设计的监护模块与医院内心电监护中心的心电实时监控服务器都工作于客户/服务器模式下。在工作状态下,心电数据接收转发器客户端应用程序,首先初始化以太网接口,然后主动与医院内心电实时监控服务器建立连接;连接成功后,进入工作状态,不断接收心电数据,并通过已建立的连接将数据发送到心电实时监控服务器。

4 结论

由于采用嵌入式Internet技术,利用以太网传输被监护病人心电数据,理论上整个系统中被监护病人的个数无限制,只要网络的带宽和服务器的处理能力足够强,就可以任意扩展。被监护病人既可位于医院的病房,也可位于家庭、办公室,只要该处有宽带网接入端口即可。因此.该系统将大大增强和扩展医院的医疗服务能力,同时也使更多的病人得到低成本和周到的心电监护服务,具有很高的推广价值和显著的社会经济效益。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 医疗
  • 脑机接口
  • 额温枪
  • 呼吸机
  • 体外诊断设备上的各类嵌入式方案

    ZLG深耕嵌入式二十年,为诸多医疗企业用户提供嵌入式解决方案,包括基因扩增仪、荧光免疫分析仪、特定蛋白分析仪等常用医疗设备,本篇文章为大家介绍ZLG在体外诊断设备上提供的各类嵌入式解决方案。 病毒试剂盒的研制离不开基因扩增仪(PCR)、荧光分析仪等医

    02-26
  • 5G实现远程手术,靠谱吗

    在5G的启蒙阶段,我们经常看到各种科技感十足的应用,远程手术正是其中之一。随着5G的广泛部署,这些应用的宣传都渐渐消歇。 那么,很多人就要问了,5G到底能不能实现远程手术?用光纤不是更好吗? 其实,这个问题的关键不在5G或者光纤,而在于远程手术。 做

    05-17
  • 医疗设备的接地电阻过高问题

    1.设备的接地电阻过高问题医疗设备的接地电阻过高被列为十大问题之首,这是因为这种故障的发生概率最高,一台设备的电磁发射问题、自兼容问题及抗干扰性问题,其根源都与

    01-08
  • 模拟滤波、信号处理、人机界面:携式医疗设备的下一个浪潮

    1模拟滤波AED信号处理时需要多个过滤器,同样的情况也出现在大多数智能医疗设备中。首个滤波操作用来将关键信号成分中的背景噪声消除。高通滤波器通常用来移除不相干的

    2020-09-10
  • 可穿戴看护产品的设计案例

    当你想到可穿戴产品时,浮现在你脑海中的是什么样的景象呢?也许是一个年轻女性在长距离奔跑中随时跟踪跑步的英里数。也许是一个中年人在健身游戏中随时查看下一个动作。或

    2020-09-10
  • 一个脉搏血氧计的设计示例

    医疗和健身领域,以及这些领域的相关电子设备,真可谓是在发生日新月异的变化。当今医疗保健设备市场的需求不仅巨大而多样,且极具挑战性。以往主要在医院使用的设备,现在

    2020-09-10
  • 医学影像技术:核磁共振成像与超声波成像

    作者:贸泽电子BryonMoyer核磁共振成像核磁共振成像也称磁共振成像,是利用核磁共振原理,通过外加梯度磁场检测所发射出的电磁波,据此可以绘制成物体内部的结构

    2020-09-30
  • 医学影像技术:计算机断层扫描(CT)与正电子发射断层成像(PET)

    作者:贸泽电子BryonMoyer自从威廉.伦琴于1895年给他妻子拍下了第一张模糊的X射线胶片,科学家们一直在寻找研究一种更好的,无创的能够探测人类内部结构的

    2020-09-30
  • 电子纺织的工作原理及医疗保健智能服装的前景

    作者:贸泽电子,PeterBrown当提到可穿戴设备时,大多数人会想到戴在手腕上的智能手表、健身监视器和心率监测器等。然而,可穿戴设备市场已经远远超越了这些标准

    2020-11-23
  • 适用于患者监测系统的潜在解决方案

    背景总体医疗电子市场在2015年的估值约为30亿美元,并预期将以5.4%的年复合增长率持续成长,到2022年达到44.1亿美元的市场规模。[信息来源:Marke

    2020-11-24
  • 测量光电容积脉搏波(PPG)信号提供按需心率估算

    作者:ForooharForoozan想象未来几十年后的世界,您的孙子们可能不知道医院这个词,所有健康信息都是通过传感器远程记录和监测。想象您的家里配备了不同的

    04-28
  • 光学心率检测的运行原理及系统设计关键

    作者:SiliconLabs资深系统工程师MorrieAltmejd设计与实现一个光学心率监测(HRM)系统(又称光电容积脉搏波技术,简称PPG)是一类复杂的、

    03-30
下载排行榜
更多
广告
X
广告