一.网络服务器
1.1 普通循环网络服务器
对于普通的循环网络服务器,其实就是服务器使用循环的方法逐个对客户的连接进行处理,处理完一个连接后再处理下一个连接,其过程如下:
最简单的代码模型我还是给大家:
int main(void){ struct sockaddr_in serv,cli; socklen_t cli_len; char buf[128]; char IP[32]; //创建一个通讯端点,返回该端点的文件描述符 //创建一个ipv4的tcp连接端口 int s_fd=socket( AF_INET ,SOCK_STREAM ,0); //需要对server变量成员初始化 serv.sin_family=AF_INET; serv.sin_port=htons(5556); serv.sin_addr.s_addr=htonl(INADDR_ANY); //将s_fd和本地地址,端口号绑定 int b=bind(s_fd,(struct sockaddr *)&serv,sizeof(serv)); if(b==-1)E_MSG("bind",-1); if(s_fd==-1)E_MSG("socket",-1); //将s_fd设置为被动连接,监听客户端连接的到来 //将客户端到来的连接放入未决连接队列中 //指定未决连接队列的长度 listen(s_fd,5); while(1){ //从s_fd设备的未连接队列中提取一个进程进行处理 //返回一个连接描述符,使用这个连接描述符与客户端进行通讯 int c_fd=accept(s_fd,(struct sockaddr *)&cli,&cli_len); if(c_fd==-1)E_MSG("accept",-1); //binary--->text inet_ntop(AF_INET,&cli.sin_addr,IP,32); printf("client ip: %s\n",IP); //代码执行到这里,三次握手以及完成,可以进行数据传输了 //从c_fd中读取客户端发送过来的请求信息 int r = read(c_fd,buf,128); //处理客户端的请求信息 int i; for(i=0;ibuf[i]=toupper(buf[i]); } //将处理结果回送客户端 write(c_fd,buf,r); //关闭本次连接 close(c_fd); } return 0;}
这是最简单的循环服务器代码,功能是将客户传过来的字符串全部转换为大写,这个最简单代码希望大家能全部弄懂
2.2 简单并发网络服务器
并发网络服务器是指能够同时处理多个客户端请求的网络服务器。这种服务器的设计允许它在任何时刻处理多个客户端的连接和请求,而不会因为某个请求的处理而阻塞其他请求。并发服务器可以提高资源的利用率,增强服务器的响应能力,是现代网络应用的基础。下面我将介绍几种常见的并发网络服务器模型:
2.2.1简单的并发服务器模型
-
迭代服务器(Iterative Server): 这种服务器一次处理一个请求。它接收一个请求,处理完该请求,然后才接收下一个请求。这种模型简单,但效率低下,因为它在处理一个请求时不能处理其他请求。
-
并发服务器(Concurrent Server): 并发服务器可以同时处理多个请求。这通常通过多进程或多线程来实现。服务器的主进程或线程监听端口,接受新的连接,然后为每个连接创建一个新的进程或线程来处理请求。
2.2.2使用进程的并发服务器
-
多进程服务器(Multiprocess Server): 在这个模型中,服务器的主进程监听端口,接受新的连接。每当有一个新的连接时,主进程就fork一个子进程来处理这个连接。每个子进程都可以独立地与客户端通信,处理请求。这种模型的优点是代码简单,缺点是进程创建和销毁的开销较大。
-
预派生子进程服务器(Pre-forking Server): 这种服务器在启动时就预先创建一定数量的子进程,每个子进程都阻塞在accept调用上等待新的连接。当一个连接到达时,其中一个子进程接受连接并处理请求。这种模型减少了进程创建的开销,但需要预先分配资源。
-
这里我手绘一个UML图来帮助大家理解如何利用进程池:
-
2.2.3使用线程的并发服务器
-
多线程服务器(Multithreaded Server): 在这个模型中,服务器的主线程监听端口,接受新的连接。每当有一个新的连接时,主线程就创建一个新的线程来处理这个连接。由于线程共享内存空间,因此它们之间可以更容易地共享数据,但这也带来了同步问题。
-
线程池服务器(Thread Pool Server): 线程池服务器预先创建一定数量的工作线程,这些线程都阻塞在等待任务队列上。当一个新的连接到达时,主线程将连接放入任务队列,工作线程从队列中取出连接并处理请求。这种模型可以限制线程的数量,减少线程创建和销毁的开销。
-
这里我手绘一个UML图来帮助大家理解如何利用线程池:
-
2.2.4其他并发服务器模型
-
事件驱动服务器(Event-Driven Server): 事件驱动服务器使用非阻塞IO和事件循环来处理多个客户端连接。服务器注册感兴趣的事件(如可读、可写事件),然后在一个循环中等待这些事件的发生。当事件发生时,服务器处理相应的事件。这种模型可以非常高效地处理大量连接。
-
异步IO服务器(Asynchronous I/O Server): 异步IO服务器使用操作系统提供的异步IO接口来处理请求。服务器发起IO操作,然后继续处理其他任务。当IO操作完成时,操作系统通知服务器。这种模型可以充分利用CPU资源,因为它不需要为每个请求都创建一个线程或进程。
二.使用互斥锁实现单线程处理单个客户
这里我们使用互斥锁来对每个进行上锁,实现单客户单进程处理,
2.1 具体步骤
-
初始化互斥锁:在服务器启动时,初始化一个互斥锁。
-
接受连接:服务器的主线程循环接受客户端连接。
-
创建服务线程:每当接受一个新连接时,服务器创建一个新的服务线程来处理该连接。
-
加锁处理:在每个服务线程中,当开始处理客户请求之前,首先尝试获取互斥锁。如果互斥锁已被其他线程持有,线程将阻塞直到互斥锁被释放。
-
处理请求:线程获取互斥锁后,开始处理客户请求。
-
释放锁:处理完请求后,线程释放互斥锁,以便其他线程可以获取该锁并处理下一个请求。
-
线程退出:处理完成后,线程退出或返回到池中等待下一个请求
-
2.2服务器代码模板
-
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER; void *handle_client(void *client_socket) { int socket = *(int *)client_socket; // 加锁 pthread_mutex_lock(&lock); // 处理客户请求 // ... // 释放锁 pthread_mutex_unlock(&lock); // 关闭客户端套接字 close(socket); return NULL;} int main() { // 创建监听套接字 // ... while (1) { int client_socket = accept(listen_socket, NULL, NULL); // 创建线程来处理客户端 pthread_t thread; pthread_create(&thread, NULL, handle_client, &client_socket); pthread_detach(thread); // 使线程独立运行 } // 关闭监听套接字 // ... return 0;}
三.源码剖析
//线程处理业务函数pthread_mutex_t ALOCK = PTHREAD_MUTEX_INITIALIZER ;//创建互斥量 static void * handle_request(void * argv){ int s_s = *((int *) argv); int s_c; struct sockaddr_in from ; socklen_t len = sizeof(from); for(;;){ time_t now; char buf [bufferlen]; int n=0; pthread_mutex_lock(&ALOCK); //进入互斥区 s_c = accept(s_s , (struct sockaddr *)&from , &len);//接收请求 pthread_mutex_unlock(&ALOCK); //离开互斥区 memset(buf , 0 ,bufferlen); n = recv(s_c , buf , bufferlen , 0);//接收数据 if(n > 0 && !strncmp(buf , "TIME" , 4))//判断是否为合法接收数据 { memset(buf ,0 ,bufferlen); now = time(NULL); sprintf(buf , "%24s\r\n",ctime(&now));//时间写入buf send(s_c , buf , strlen(buf) , 0);//发送给客户端 } close(s_c); } return ; } //线程创建函数static void handle_connect(int s){ int s_s =s; pthread_t thread_do[max_pthread];//创建线程数组 int i=0; //创建线程,每一次创建调用线程处理函数 for(i = 0; ipthread_create(&thread_do[i] , NULL, handle_request , (void *)&s_s); } //等待线程结束 for(i = 0; i pthread_join(thread_do[i] , NULL); } } int main(int argc ,char * argvp[]){ int s_s; struct sockaddr_in local ;//本地地址 s_s = socket(AF_INET , SOCK_STREAM , 0); memset(&local , 0 , sizeof(local)); local.sin_family = AF_INET; local.sin_addr.s_addr = htonl(INADDR_ANY); local.sin_port = htons(server_port); bind(s_s , (struct sockaddr *)&local ,sizeof(local));//连接本地地址 listen(s_s , backlog);//创建监听队列 handle_connect(s_s); close(s_s); return 0;}
这段代码是一个简单的网络服务器示例,它使用了 POSIX 线程(pthread)来处理客户端请求。下面我将逐行解释代码的功能:
这里包含了必要的头文件,包括标准输入输出、文件操作、网络编程、字符串操作、IP地址转换、非阻塞I/O等。
定义了一些宏,用于设置缓冲区大小、服务器端口、监听队列大小和最大线程数。
//线程处理业务函数pthread_mutex_t ALOCK = PTHREAD_MUTEX_INITIALIZER ;//创建互斥量
定义了一个互斥量 ALOCK,用于线程间的同步。
static void * handle_request(void * argv){ int s_s = *((int *) argv); int s_c; struct sockaddr_in from ; socklen_t len = sizeof(from); for(;;){ time_t now; char buf [bufferlen]; int n=0; pthread_mutex_lock(&ALOCK); //进入互斥区 s_c = accept(s_s , (struct sockaddr *)&from , &len);//接收请求 pthread_mutex_unlock(&ALOCK); //离开互斥区 memset(buf , 0 ,bufferlen); n = recv(s_c , buf , bufferlen , 0);//接收数据 if(n > 0 && !strncmp(buf , "TIME" , 4))//判断是否为合法接收数据 { memset(buf ,0 ,bufferlen); now = time(NULL); sprintf(buf , "%24s\r\n",ctime(&now));//时间写入buf send(s_c , buf , strlen(buf) , 0);//发送给客户端 } close(s_c); } return ;}
handle_request 函数是线程处理业务的核心。它接受一个整数参数 s_s,这是服务器套接字。函数进入一个无限循环,接收客户端的连接(accept 调用),接收数据(recv 调用),处理数据(如果数据是以 “TIME” 开头的,则返回当前时间),然后关闭客户端套接字。