STM32进入和退出睡眠模式的软件程序设计
0 2022-08-17

1、设计要求

要求系统按如下方式进入和退出睡眠模式:

在系统启动2秒后,将RTC在3秒钟之后配置为产生一个报警事件,接着通过WFI指令使系统进入停机模式。如果要唤醒系统到正常模式,可通过按Key按钮;否则,在3秒钟后,会产生RTC报警中断自动将系统唤醒。一旦退出停机模式,系统时钟被配置成先前的状态(在停机模式下,外部高速振荡器HSE和PLL是不可用的)。经过一段延时之后,系统将再次进入停机状态,并可按上述操作无限重复。

2、硬件电路设计

硬件电路采用与7.1小节应用实例一样硬件电路,可见图7-10。其中Key按钮用于通过PB9产生一个外部中断,LED1、LED2、LED3、LED4则用于显示处理器所处的模式和中断触发情况。

3、软件程序设计

根据任务要求,程序内容主要包括:
(1) 配置GPIOB口,配置RTC,配置外部中断;
(2) 配置PB口第9个引脚作为外部中断,下降延触发;配置RTC报警中断,上升沿触发;
(3) 两个中断服务子程序的内容分别是:切换LED2和LED3灯的状态;

整个工程包含3个源文件:STM32F10x.s、stm32f10x_it.c和main.c,其中STM32F10x.s为启动代码,所有中断服务子程序均在stm32f10x_it.c中,其它函数则在main.c中。

下面分别介绍相关的函数,具体程序清单见参考程序。

函数SYSCLKConfig_STOP用于当处理器从停机模式唤醒之后,配置系统时钟、使能HSE和PLL,并以PLL作为系统时钟源。当处理器处理停机模式的时候,HSE、PLL是不可用的。

函数GPIO_Configuration用于配置GPIO的PC6、PC7、PC8、PC9和PB9。

函数EXTI_Configuration用于配置外部中断线9(PB9)和17(RTC报警)。

函数NVIC_Configuration配置NVIC及中断向量表,这里主要是配置外部中断线9和17。

函数EXTI9_5_IRQHandler处理按钮Key(PB9)所触发的中断,其主要作用是将LED2灯的状态翻转一次。

函数RTCAlarm_IRQHandler处理RTC报警所触发的中断,其主要作用事将LED3 灯的状态翻转一次,如果设置了唤醒标志则清除之。

运行过程:

(1) 使用Keil uVision3 通过ULINK 2仿真器连接实验板,打开实验例程目录PWR_TEST子目录下的PWR.Uv2例程,编译链接工程;

(2) 选择软件调试模式,点击MDK 的Debug菜单,选择Start/Stop Debug Session项或Ctrl+F5键,在逻辑分析仪中添加GPIOC_ODR.6、GPIOC_ODR.7、GPIOC_ODR.8、GPIOC_ODR.9,点击Run按钮即可,在逻辑分析仪中看到如图7-14,还可用Peripherals-General Port-GPIOB来模拟KEY按钮的动作;

(3) 选择硬件调试模式,选择Start/Stop Debug Session项或Ctrl+F5键,下载程序并运行,观察LED灯的变化情况。注意,当目标系统进入停机模式之后,将无法使用仿真器进行调试了;

(4) 退出Debug模式,打开Flash菜单>Download,将程序下载到开发板的Flash中,按RESET键复位,观察LED灯的情况,正常情况应为:
系统处于运行模式时LED1亮、LED4灭;
系统处于停机状态时LED1灭、LED4亮;
当按下KEY按钮时LED2灯状态发生反转;
当发生RTC报警时LED3状态发生反转。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 报名中:IIC Shenzhen - 2022国际集成电路展览会暨研讨会


  • 相关技术文库
  • 单片机
  • 嵌入式
  • MCU
  • STM
  • 以32位微处理器为控制核心的超级电容器组管理系统

    在传统的能量供应系统中,电池作为主要的储能单元被广泛使用。随着科学技术的发展和保护环境的需求,超级电容器因其容量大、寿命长、放电速度快、工作温度范围宽、可以串并

    09-30
  • 多节动力电池检测系统的单片机控制模块

    针对动力电池工作参数的监测,保护其安全性和使用寿命的问题,提出基于电池管理芯片 LTC6803 设计一套电池管理系统,利用 LTC6803 和 STC12C54

    09-30
  • CFS任务的负载均衡

    负载均衡的系列文章共分为三篇,第一篇为框架篇,描述负载均衡的相关原理、场景和框架。本篇作为该系列文章第二篇,主要通过对任务放置场景(task placement)的均衡分布进行分析,以便加深读者对内核调度器实现任务均衡分布的理解。 本文基于linux-5.4.24分

    09-29
  • Multi-queue 架构分析

    Linux上传统的块设备层(Block Layer)和IO调度器(如cfq)主要是针对HDD(hard disk drivers)设计的。我们知道,HDD设备的随机IO性能很差,吞吐量大约是几百IOPS(IOs per second),延迟在毫秒级,所以当时IO性能的瓶颈在硬件,而不是内核。但是,随着高速

    09-29
  • ARMv8 异常处理简介

    内核稳定性问题复杂多样,最常见的莫过于“kernel panic”,意为“内核恐慌,不知所措”。这种情况下系统自然无法正常运转,只能自我结束生命,留下死亡信息。诸如: “Unable to handle kernel XXX at virtual address XXX” “undefined instruction XXX”

    09-29
  • 新型 IO 调度器 BFQ 简介

    Linux io调度器有很多种,大多数调度器都经受住了各种市场环境的长时间验证,稳定性、性能得到各种用户的认可,但新的调度器依然展露头角,在4.12内核中出现了一个新的bfq调度器,这个调度器将取代曾经的辉煌的cfq调度器。社区对待大的改动都是很谨慎的,为什

    09-29
  • CFS任务的负载均衡(框架篇)

    我们描述负载均衡的系列文章一共三篇,第一篇是框架部分,即本文,主要描述了负载均衡相关的原理、场景和框架。后面的两篇是对均衡代码的情景分析,通过对load balance、task placement和active upmigration几个典型的负载均衡来呈现其实现细节,稍后发布,敬

    09-29
  • linux IO Block layer 解析

    早期的 Block 框架是单队列(single-queue)架构,适用于“硬件单队列”的存储设备(比如机械磁盘),随着存储器件技术的发展,支持“硬件多队列”的存储器件越来越常见(比如 NVMe SSD),传统的单队列架构也因此被改成了多队列(multi-queue)架构。早在 3.

    09-29
  • eMMC简介

    1 eMMC是什么 eMMC是embedded MultiMediaCard的简称,即嵌入式多媒体卡, 是一种闪存卡的标准,它定义了基于嵌入式多媒体卡的存储系统的物理架构和访问接口及协议,具体由电子设备工程联合委员会JEDEC订立和发布。 它是对 MMC的一个拓展,具有体积小,功耗低,

    09-29
  • 低纹波、高精度电流源设计

    低纹波、高精度电流源是一种重要的仪器设备;广泛应用于电光源、电化学、通信、测量技术、电子仪器等领域。目前,市场上的电流源不具备连续可调功能;并且输出电流范围小、

    09-29
  • Linux 电信基站系统解决方案

      自从1991年Linux第一次面世以来,任何人也不会想到这个不起眼的操作系统现在会应用得如此广泛。无论是从嵌入式领域的智能手机到大型计算服务器都可以找到它的

    09-28
  • 单片机振荡电路中如何选择晶体?

    1.单片机晶振的原理晶振一般采用三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路中,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实

    09-28
下载排行榜
更多
广告