放大器驱动SAR ADC电路的设计难点
放大器参数解析与LTspice仿真 2022-09-27
   本篇将详细讨论驱动RC的用途与设计方法,同时提供便捷化设计工具,并结合LTspice进行仿真。

    1 SAR ADC模型与驱动原理

    SAR型ADC输入端电路如图4.26(a),在采集阶段SAR型ADC的开关SW+,SW-连接到地(GND),独立电容开关矩阵连接到输入端,捕捉INx+与INx-输入端模拟信号。采集完成进入转换阶段时,开关SW+、SW-断开,独立电容开关矩阵连接到地输入,INx+与INx-输入间差分电压施加到比较器输入端,导致比较器不平衡,按照二级制加权电压变化实现数字转化。

图4.26SAR型ADC输入电路及模型

    简化的SAR型ADC模型如图4.26(b),当开关S1闭合S2断开,输入信号Vin向电容CADC充电,电容电压VADC到达输入信号Vin电压时采样结束,进入转换阶段。


图4.27SAR型ADC驱动电路

    VADC波形如图4.28(a)。因此需要驱动电路使电容CADC尽快充电,驱动电路需要使用放大器和输出RC组成,如图4.27。在S1闭合时,CADC没有电荷,VIN电压瞬间向下反冲,如图4.28(b)。在放大器与CFILT共同向CADC提供电荷,VADC电压逐步上升到与输入电压VIN相同时,输入采集阶段完成。

图4.28采集阶段Vin与VADC电压

    采集时间tACQ由RFILT、CFILT、CADC决定,完成充电的建立时间t为式4-17。

    CADC电压值VACD由电容CFILT、CADC,以及加载两个电容上的电荷量QFILT、QADC,为式4-18。

    由于初始采集时,QADC,QFILT为VIN与CFILT的乘积,反冲电压最低点值为式4-19。

    而反冲电压为式4-20。

    由RC网络所产生的时间常数τ0.63为式4-21。

    其中,VREF为基准源参考电压值,n为ADC位数。

    根据工程经验,从VADC出现反冲恢复到距离VIN电压小于0.5倍LSB电压时,定义为采集时间tACQ,该指标可以在ADC数据数据手册中找到。所选择的RC参数在ADC驱动过程中,需要满足采集时间、时间常数、建立时间的关系为式4-22。

    根据式4-22确认RC参数值,但上述推论没有考虑如下问题:

    1)ADC采样的带宽为式4-23。

    所以RC参数的选择往往要在带宽和采集时间之间多次迭代计算。

    2)真实放大器的参数中,开环输出阻抗的影响不可忽略,RFILT需要结合输出阻抗。

    3)由于ADC内部采样电容的非线性,当RFILT值变大会导致ADC采样失真,该失真不能通过降低采样率改善。

    因此,高效的设计SAR型ADC驱动的方法仍然是使用辅助工具和LTspice仿真软件。

    2 SRA ADC驱动辅助工具使用

    在ADI 官网精密信号链设计工具界面,选择“ADC Driver”进入ADC驱动工具窗口。如图4.29(a),“ADC”项中选择ADC的型号,输入采样率值和基准源电压值。在“Driver”项中,选择放大器型号和电路结构,输入增益值、反馈电阻值、工作电压值。在“input”项选择输入信号类型与输入频率值。在“Fliter”项,输入RC参数值。在“Circuit”窗口查看电路结构图。进入“Niose&Distortion”窗口,工具提供电路的THD等信息 ,如图4.29(b)。

图4.29SAR型ADC驱动电路配置

    进入“Input Setting”窗口,工具提供计算电路的反冲电压值,ADC采集时间、RC电路带宽参数,如图4.30(a)。当RC参数配置不良时,在“Niose&Distortion”窗口与“Input Setting”窗口会提供警告。工具还能够生成LTspice电路,在“Next Step”窗口下载,如图4.30(b)。

图4.30 SAR型ADC驱动电路性能

    3 LTspice仿真SAR型ADC驱动

    如图4.29中ADC 使用LTC2378-16,输出速率为1MSPS,基准源电压为5V。放大器使用ADA4945-1,增益配置为1,电源轨电压为-0.6V与5.6V,RFILT为20Ω,CFILT为3.3nf。得到反冲电压为67mV,RC建立时间应该小于采集时间tACQ460ns。由图4.30(d)下载仿真的电路如图4.31。

图4.31 LTC2378-16驱动电路

    瞬态分析结果如图4.32,电压从4.99979最低跌落到4.93705V,反冲电压为62.74mV,RC建立时间为358.5ns小于采集时间tACQ460ns,与预期设计近似。所以读者可以使用在线工具高效SAR ADC驱动放大器选型,以及根据具体放大器型号设计RC参数进行验证。

图4.32 LTC2378-16驱动电路仿真结果

    如图4.31在电路中,双击进入LTC2378-16进入内部电路,如图4.33。由S1、S3控制信号经过电阻R1、R2,向电容C1、C2充电。其中R1、R2、C1、C2可由规格书确认。

图4.33 LTC2378-16 Spice模型电路

    如图4.34中 LT2378输入电阻为40Ω,输入电容为45pF。根据ADC时序操作,设计开关控制的时钟,实现SAR型ADC的模型。

图4.33 LTC2378-16 输入模型

    综上,SAR ADC驱动放大器的选型与RC电路设计工作是具有极高挑战的,不乏一些经验丰富老司机也会在此栽跟头,所以笔者介绍设计原理,更多的推荐是借助辅助工具设计,以及LTspice进行仿真。此外,之前的文章都是以实际器件模型仿真电路性能,通过篇文章抛砖引玉,希望读者能对LTspice建模有初步的认识,这也是LTspice的重要应用方向。


本文源自微信公众号:放大器参数解析与LTspice仿真,不代表用户或本站观点,如有侵权,请联系nick.zong@aspencore.com 删除!

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 模拟
  • 模电
  • 运放
  • 放大
  • 基于网分的高速模数转换器输入阻抗测量

          在通信领域,随着中频(IF)频率越来越高,了解输入阻抗如何随频率而变化变得日益重要。本文解释了为什么ADC输入阻抗随频率而变化,以及为什么这是个电路设计难题;然后比较了确定输入阻抗的两种方法:利用网络分析仪测量法和利用数学分析方法计算法。本文还介绍了正确使用网络分析仪的过程,并且提供了一个数学模型,其计算结果与实际测量结果非常接近。  利用高速ADC进行设计时,常常要考虑这样的问题:“...

    昨天
  • ADL5902 TruPwr检波器用于测量RF信号分析

      电路功能与优势  该电路使用ADL5902TruPwr检波器测量RF信号的均方根信号强度,信号波峰因素(峰值均值比)在约65dB的动态范围内变化,工作频率为50MHz至9GHz。  测量结果在12位ADC(AD7466)输出端以串行数据形式提供。在数字域中针对环境温度执行简单的4点系统校准。  RF检波器与ADC之间的接口很简单,由两个信号调整电阻组成,无有源元件。此外,ADL5902内部2....

    11-24
  • 实现射频信号源的低相位噪声及高速频率切换的共存

         战胜原理上看似互相矛盾的一对经典参数   接收机质量和测试仪速度的提高对信号发生器性能提出了更为严苛的要求。随着频谱日益拥挤,通信行业必须开发新的调制技术,提高组件测试速度和性能及生产能力。因此,现在比以往更加需要经济高效的高质量信号源解决方案。  和汽车到手机的演变类似,信号发生器的性能不断提高而价格却日益走低,客户和消费者不断要求获得更多的功能和性能且希望价格更低。  RFIC 设计...

    11-24
  • 什么是晶振ppm?误差公式?

    什么是晶振ppm晶振全称是晶体振荡器,是指从一块石英晶体上按一定方位角切下薄片(简称为晶片),石英晶体谐振器,简称为石英晶体或晶体、晶振;而在封装内部添加IC组

    11-24
  • 分享7个基础模拟电路

      模拟电路  模拟电路是指用来对模拟信号进行传输、变换、处理、放大、测量和显示等工作的电路。模拟信号是指连续变化的电信号。模拟电路是电子电路的基础,它主要包括

    11-24
  • 单片机与LTC6802-2的通信接口

    1、LTC6802—2介绍LTC6802—2内部含有12位的AD转换器,精密电压基准,高电压输入多路转换器和SPI串行接口。每个芯片可以检测12节串联在一起的电

    11-23
  • SAR ADC特性和精准型工业系统要求

    引言许多工业系统都需要以最高的准确度来测量关键性的参数。实例包括地震监测、能源勘探、气流感测和硅晶圆制造等。在每种场合中,这些系统均拓展了尖端信号处理技术的界限

    11-23
下载排行榜
更多
广告