今天为大家整理了一些各类电气控制接线图、电子元件工作原理图,还有可控硅整流电路及负反馈调速装置原理等等,希望对大家的工作有所帮助,一起来了解一下吧。
目录 一、尖峰电压 Spike Voltage 减小电压尖峰 尖峰吸收缓冲电路 二、浪涌电流 Surge Current 浪涌保护器 线性浪涌抑制器 IC 一、尖峰电压 Spike Voltage 电压尖峰的特点是持续数十微妙及高达几百伏的电压,由雷击或负载阶跃的感应耦合产生,属于浪涌电压里的一种。电机、电容器和功率转换设备(如变速驱动器)是产生尖峰电压的主要因素。 通俗的说,就是在系统电压不稳,或者突然来电的时候,由于电子原件的电感、电容等原件的作用,会导致在系统中产生比正常工作的电压高许多甚至几倍十几倍的瞬间高电压,这个高电压的最高值就尖峰电压。 电压尖峰是电感续流引起的: 引起电压尖峰的电感可能是:变压器漏感、线路分布电感、器件等效模型中的感性成分等; 引起电压尖峰的电流可能是:拓扑电流、二极管反向恢复电流、不恰当的谐振电流等。 减小电压尖峰 减少电压尖峰的主要措施有: (1)减少可能引起电压尖峰的电感,比如漏感、布线电感等; (2)减少可能引起电压尖峰的电流,比如二极管反向恢复电流等; (3)将上述电感能量转移到别处。 采取上述措施后电压尖峰仍然不能接受,才考虑吸收电路。吸收是不得已的技术措施。 尖峰吸收缓冲电路 简单的缓冲电路是对冲击尖峰电流而言,电流尖峰的成因如下: (1)二极管(包括体二极管)反向恢复电流; (2)电容的充放电电流。这些电容可能是:电路分布电容、变压器绕组等效分布电容、设计不恰当的吸收电容、设计不恰当的谐振电容、器件的等效模型中的电容成分等。 缓冲的基本方法:在冲击电流尖峰的路径上串入某种类型的电感,常见于BUCK电路中。 注:由于缓冲电感的串入会显著增加吸收的工作量,因此缓冲电路一般需要与吸收电路配合使用;缓冲电路延缓了导通电流冲击,可实现某种程度的软开通(ZIS)。 尖峰电压吸收电路主要有三种设计方案: (1)利用齐纳二极管和超快恢复二极管(SRD)组成齐纳钳位电路; (2)利用阻容元件和超快恢复二极管组成的R、C、SRD软钳位电路; (3)由阻容元件构成RC缓冲吸收电路。 在开关电源电路中,通常经过稳压器7805后,在大的电解电容旁边加一个小的瓷片电容,小的电容滤除高的 dV/dt 尖峰电压。 二、浪涌电流 Surge Current 电路在遭雷击和在接通、断开电感负载或大型负载时常常会产生很高的操作过电压,这种瞬时过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰。上文提到过,尖峰电压也是浪涌电压的一种。 在通常意义上,浪涌电流指电源接通瞬间,流入电源设备的峰值电流。由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。 浪涌导致的危害主要包括: (1) 存储器内数据丢失 (2) I/O接口电路复位,导致控制过程中断 (3) 线路板上的器件损坏 (4) 预置的校准值漂移 (5) 程序跑飞、系统死锁 (6) 变频器、直流电机驱动器等的输入整流模块故障 (7) 控制器发出错误指令,导致系统误动作 浪涌保护器 浪涌保护器(Surge Protection Device, SPD)是用来限制瞬态过电压及泄放相应瞬态过电流,保护电子电气设备安全的装置,又可称为电涌保护器(或防雷器、防雷保安器、避雷器等)。它至少应含有一个非线性元件。浪涌保护器实际上也是一种等电位连接器。 线性浪涌抑制器 IC LT4363 高压浪涌抑制器: 在正常操作情况下,一个外部 N 沟道 MOSFET 被驱动至全通,并充当一个具非常小电压降的传输器件。如果输出电压上升至高于由 FB 引脚上的电阻分压器设定的稳压值,MOSFET 就调节 OUT 引脚上的电压,从而使负载电路能够在瞬态事件发生期间继续运行。 SNS 和 OUT 引脚之间的可选电阻器用来控制过流事件,电流限制环路控制 MOSFET 上的栅极电压,以将电阻器两端的检测电压限制到 50mV。 无论过压还是过流事件都会启动一个电流源给连至 TMR 引脚的电容器充电。充电电流与输入至输出电压差有关,以使定时器周期随着日益严重的故障而缩短,从而确保 MOSFET 保持在其安全工作区之内。
由于关乎车辆的性能和成本,汽车零部件的集成化、标准化一直是业界努力的方向,要实现快速的产品迭代和平台化应用,标准化和集成化都是两大利器。所谓集成化,就是对原本分立的系统进行集成,从而使得汽车相关组件数量精简,体积变小,质量变轻,效率提升。比如比亚迪基于“e 平台”打造的电动汽车,正是通过高度集成、一体控制,实现了整车重量的减轻、整车布局的优化,能耗效率的提升和可靠性的提高,最终加速推动电动汽车的普及。 高压充配电总成三合一一般包括车载充电机(OBC)、高压配电盒(PDU)以及DC-DC转换器。有些充配电总成还会在三合一的基础之上再集成双向交流逆变式电机控制器(VTOG),也就是俗称的四合一。 一.车载充电机的组成和原理 车载充电机内部可分为主电路、控制电路、线束及标准件三部分。主电路前端将交流电转换为恒定电压的直流电,主电路后端为DC/DC变换器,将前端转出的直流高压电变换为合适的电压及电流供给动力蓄电池。 车载充电机控制电路具有控制场效应管开关,它与BMS之间进行通信,监测充电机工作状态以及与充电桩握手等。线束及标准件用于主电路与控制电路的连接,固定元器件及电路板。车载充电机工作原理如图所示。 转化原理:220Vac经过EMI滤波电路滤波,通过一次AC-DC转换器整流,将AC整流为DC,后经PFC功率因数校准电路进行升压,再送往开关和变压器变频升压,经过LLC过第二次整流滤波后输出高压直流给动力电池充电(第一次220Vac整流到310Vdc,电压不够,要升压转化两次) 二.高压配电盒 电动汽车高压配电箱(PDU)又称为高压配电盒,是高压系统分配单元。电动汽车具有高电压和大电流的特点,通常配备300V以上的高压系统,工作电可达200A以上,可能危及人身安全和高压零部件的使用安全性。因此,在设计和规划高压动力系统时,不仅要充分满足整车动力驱动要求,还要确保汽车运行安全、驾乘人员安全和汽车运行环境安全。 新能源汽车通常在大功率的电力环境下运行,有的电压高达700V以上,电流高达400A,对高压配电系统的设计及零部件的选用提出了巨大的挑战。高压电源通过高压电缆直接进入高压控制盒后根据各车型系统的需要分配到系统高压电气部件,并且需要保证整个高压系统及各高压电器设备的安全性、绝缘性、电磁干扰屏蔽性等要求。 三.DC-DC转换器 1.功能 (1)驱动直流电机在小功率直流电机驱动的转向、制动等辅助系统中,一般直接采用DC/DC电源变换器供电。 (2)向低压设备供电向电动汽车中的各种低压设备如车灯等供电。 (3)给低压蓄电池充电在电动汽车中,需要高压电源通过降压型 DC/DC转换器给低压蓄电池充电,将动力电池的400V/800V的高压直流电转化为12V低压直流电给低压蓄电池充电。 (4)不同电源之间的特性匹配以燃料电池电动汽车为例,一般采用燃料电池组和动力电池的混合动力系统结构。在能量混合型系统中,采用升压型DC/DC 转换器;在功率混合型系统中,采用双向型DC/DC 转换器。 2.工作原理 3.工作原理简图 4.转换器内部 5.工作条件及判断 工作条件: (1)高压输入范围为DC290~420V (2)低压输入范围为DC9~14V 判断DC/DC是否工作的方法 第一步,保证整车线束正常连接的情况下,上电前使用万用表测量铅酸蓄电池端电压,并记录 第二步,打开到“on档”整车上电,继续读取万用表数值,查看变化情况,如果数值在13.8~14V之间,判断为DC工作 四.双向交流逆变式电机控制器 该控制器为电压型逆变器,利用IGBT将直流电转化成交流电,其主要功能是通过收集挡位信号、加速踏板信号、制动踏板信号等来控制电机,根据不同工况控制电机的正反转、功率、扭矩、转速等,即控制电机的前进、倒退、维持车辆的正常运转。此外,还具备充电控制功能,能进行交直流转换,双向充放电控制,它主要负责充电功率大于3.3KW的交流电(含单相和三相交流电)转换为高压直流电为动力蓄电池充电。该控制器总成分为上、中、下3个单元,上、下层为电机控制单元和充电控制单元,中间层为水道冷却单元。
12V-5V开关电源设计原理: 以12V电压作为输入,通过控制开关电路的通断时间,实现电感的充放电时间,改变输出电压的平均值,然后进行LC滤波,对输出电压进行电压和电流反馈控制,使其最后输出5V电压。在12V转5V的开关电源设计中有异步整流和同步整流两种电路设计,接下来我们依次就讲述其中的降压电路原理。 一、异步整流 1、通过控制开关闭合的时间即占空比产生需要的方波 这是简化之后的原理图,它的本质就是通过不停的开关来达到降压的目的,所以叫他开关电源。 它的输入是12V的直流电,然后我们给他不停的开关,波形就变了。如果是有一半时间闭合,一半时间断开,则到最后可以输出六伏的电压。(本质就是通过控制开关闭合的时间即占空比,来产生一个周期性的方波,也就是PWM波,占空比=输出电压/输入电压)。 而我们要从12V得到5V的电压,那么就需要42%的时间闭合,58%的时间断开(如下图的红色矩形波),但我们需要的是恒定电压的直流电即电压大小与方向随着时间推移都不改变(如下图蓝色的波浪线),怎么把这些矩形波变成恒定电压的直流5V电呢? 1.注:因为开关电源里的开关周期的时间通常以微妙作为单位,所以就需要晶体管来替代开关(它能有每秒上万次的开关频率) 2、LC滤波电路 想要把图一里的红色矩形波变成蓝色波浪线即恒定电压的直流5V电,那就得靠LC滤波电路进行滤波了。 电感在电路最常见的作用就是与电容一起,组成LC滤波电路。我们已经知道,电容具有“阻直流,通交流”的本领,而电感则有“通直流,阻交流,通低频,阻高频”的功能。 如果把伴有许多干扰信号的直流电通过LC滤波电路(如图),那么,交流干扰信号大部分将被电感阻止吸收变成磁感和热能,剩下的大部分被电容旁路到地,这就可以抑制干扰信号的作用。 当MOS管断开,电感首先充当电源的作用,当电感电流耗尽,此时电容进行放电,使电压维持在5V。此时,在输出端就获得比较纯净的直流电流(压)。 3、二极管的作用 在这里,二极管主要用于给电感续流,又称为续流二极管。因为MOS管断开时,电感一端处于悬空状态,由于电感的电流不能突变(可以突变,比如从2A瞬间降至0,但电感会通过抬升电压维持电流防止突变,一旦突变则会损坏电路),此时给电路并联一个二极管以给电感续流形成回路。在这里放二极管还有个好处,是因为二极管的单向导电性使得MOS管闭合时,该支路断开,不影响LC滤波电路。 二、同步整流电路 1、开关电源优势及改进 开关电源的优势: ①功耗低,效率高。 ②体积小,重量轻。 ③稳压范围宽。 开关电源的损耗来源: ①开关管损耗。 ②电感电容损耗。 ③二级管损耗 开关电源的损耗分析:开关电源的效率可以达到90%以上,如果精心优化与设计,甚至可以达到95%以上,这在以电池作为电力来源的场合非常重要,例如手机、小型无人机等。因此开关电源设计的优劣程度将直接影响设备的续航能力。 我们通过上面的分析,清楚的意识到开关电源的损耗其实是一个非常重要的问题,同时大家都知道,无论电流多大,只要有电流存在,二极管的固定压降就是0.4V左右,电流1A的话意味着二极管消耗的功率就是0.4W,这其实是一个不小的损耗,因此我们可以把续流二极管使用另一个MOS管来代替,只需要保证这两个MOS关的开关状态相反即可,如下图所示,这也是所谓的同步整流电路。
直流稳压电压电源的设计思路是将220V,50HZ交流电通过变压器降为合适交流电压值,然后经过整流电路将交流电转为直流电,再通过滤波电路滤除直流电中的交流成分,最后通过集成稳压器构成的稳压电路转化为稳定直流电输出。集成稳压器具有体积小、重量轻、安装和调试方便、可靠性和稳定性高等优点。 1.整流电路设计 方案一:采用半波整流电路 半波整流电路如图2所示,半波整流电路只利用电源输出电压的正半周,电源的利用效率非常低,会带来很大的资源浪费,它仅在高电压、小电流等少数情况下使用,--般半波整流电路电源电路中很少使用。 图2 半波整流电路图 方案二:采用全波整流电路 全波整流电路图见如图3所示,全波整流电路中的每个整流二极管上流过的电流只是负载电流的--半,比半波整流小--倍,它所使用的整流器件较半波整流时多一倍。全波整流电路的整流电压脉动较小,变压器的利用率比半波整流时高很多,整流器件所能承受的反向电压较高。但是全波整流电路需要特制的变压器才能正常工作,变压器二次绕组需要-一个中心抽头,制作起来会比较麻烦。 图3 全波整流电路图 方案三:采用桥式整流电路 桥式整流电路如图4所示,这种整流电路使用普通的变压器,比一般的全波整流电路多用到了两个整流二极管。因为整流二极管以四个连接成电桥形式,所以称这种整流电路为桥式整流电路。桥式整流电路使用的整流器件较一般的全波整流电路多一倍,但是其每个器件所承受的反向电压较小,在直流稳压电源的设计当中得到广泛使用。 图4 桥式整流电路图 综合考虑以上3种方案的优缺点,决定采用方案三:桥式整流电路。 2.滤波电路设计 方案一:采用电感滤波电路 电感滤波电路如图5所示,电感滤波电路是利用电感对脉动直流的反向电动势来达到滤波的作用,电感量越大,其滤波效果越好。电感滤波电路带负载能力比较好,多用于负载电流较大的场合。如果忽略电感线圈的直流电阻,负载上的直流电压与不加滤波时负载上的直流电压基本相同。电感滤波电路输出电压没有电容滤波高。在电感滤波电路中,峰值电流很小,整流管的导电角较大,输出特性比较平坦,但是由于铁心的存在,笨重、体积大,容易引起电磁干扰,电感滤波电路用只用在低电压、大电流场合。 图5 电感滤波电路 方案二:采用RC滤波电路 RC滤波电路如图6所示,它是由两个电容和一个电阻组成,又称π型RC滤波电路。这种滤波电路由于增加了一个电阻R1,使交流纹波都分担在R1.上。R1和C2越大其滤波效果越好,但R1过大又会造成压降过大,减小了输出电压。在RC滤波电路中,一般R1应远小于R2。 图6 RC滤波电路图 方案三:采用LC滤波电路 LC滤波电路如图7所示,LC滤波电路是-种与RC滤波电路相对的滤波电路,此滤波电路的优点是综合了电容滤波电路纹波小和电感滤波电路带负载能力强的特性。 图7 LC滤波电路图 方案四:采用电容滤波电路 电容滤波电路如图8所示,电容滤波电路是利用电容的充放电原理达到滤波的作用。电容滤波电路简单,纹波较小,负载直流电压比较高,它适用于负载电压较高,负载变动不大的场合,使用电容滤波电路也减轻了电路设计工作。由于电感的体积和制作成本等原因,滤波电路多采用电容滤波。 图8电容滤波电路 基于以上的电路对比分析,选用电容滤波电路。 3.稳压电路设计 稳压电路的作用是为电路提供更加稳定的直流电。整流滤波电路的输出电压和理想直流电源还有一定的差距,主要因为两方面的原因:第一,当负载电流发生变化时,由于整流滤波电路存在内阻,输出的直流电压将会随之发生变化;第二,当电网电压有波动时,整流电路的输出电压与变压器副边电压有直接的关系,因此输出直流电压也会发生变化。 根据设计任务的要求,利用可调式三端集成稳压器LM317和LM337组装的电路可对称输出士5v的直流电压。进一步改进为组装输出连续可调的士1.2v-士7v。 4.可调式三端集成稳压器 可调式三端集成稳压器克服了固定三端稳压器输出电压不可调的缺点,同时有继承了三端固定式集成稳压器的一些优点。可调式三端集成稳压器CW317 和CW337是一种悬浮式串联调整稳压器, 317系列集成稳压器能够输出连续可调的正电压,337系列集成稳压器能够输出连可调的负电压。它们的外形如图9所示,内部电路如图10所示,典型应用电路如图11所示。 图9 CW317和CW337外形图 图10 可调式三端集成稳压器内部原理图 图11 CW317和CW337典型应用电路 在实际的应用当中,为了使电路正常工作,一般317和337系列稳压器输出电流不小于5mA。其输入电压范围在2~40V之间,输出电压可在1.25V~37V之间调整,负载电流可达到1.5A,因为调整端的输出电流非常小且恒定,可将其忽略不计,这样输出电压可用下式(1)表示: (1) 在上式中,1.25V是集成稳压块输出端与调整端之间的固有参考电压,此电压加于给定电阻R1两端,会产生一个恒定电流通过输出电压调节电位器Rp,通常电阻R1:取值为120Ω ~ 240Ω,根据LM317输出电压表达式,取: R1=2.2k, R2=2k。Rp一般使用精密电位器,与其并联的电容器C可进一步减小输出电压的纹波。 可调式稳压器内部含有过流、过热保护电路,具有安全可靠,性能优良、不易损坏、使用方便等优点。其电压调整率和电流调整率均优于固定式集成稳压构成的可调电压稳压电源。LM317系列和1M337系列的引脚功能基本相同。 LM317的一-些特性参数如下: (1)输出电压可调范围: 1.2V~37V; (2)输出负载电流: 1.5A; (3)输入与输出工作压差U=Ui-U。: 3~40V。 5.集成稳压器的参数关系 在直流稳压电源的设计当中,集成稳压器的输出电压Uo应与稳压电源要求的输出电压的大小及范围相符。稳压器的最大允许电流I < Io max,稳压器的输入电压Ui以满足下式(1)。 Uo max+ (Ui-Uo) min ≤ Ui ≤ Uo min+ (Ui-Uo) max (1) 在式(1)当中,Uo max 为稳压电源的最大输出电压; Uo min 为稳压电源的最小输出电压; (Ui-Uo) min为稳压器的最小输入输出压差; (Ui-Uo) max 为稳压器的最大输入输出压差。 可调式三端集成稳压器输出电压Uo满足下式(2) Uo = 1.25 × ( 1 + RpR1 )(2) 电路进行电路仿真 1.直流电压输出电路仿真 采用Multisim仿真软件对所设计的电路进行电路仿真,仿真运行结果如图12: 图12 士1.2v-士7v直流电压对称输出电路Multisim仿真效果 士1.2v直流电压输出万用表显示如图13所示,士1.2v直流电压输出示波器显示如图14所示,士7v直流电压输出万用表显示如图15所示,士7v直流电压输出示波器显示如图16所示。 图13 士1.2v直流电压输出万用表显示 图14 士1.2v直流电压输出示波器显示 图15 士7v直流电压输出万用表显示 图16 士7v直流电压输出示波器显示
一般的产品用的都是直流电源,像手持产品多是5V电源,一些小设备也是5V,大一些的设备12V的稍多一些,车载电子产品有12V和24V两种电源。 这些电源输入的防护电路主要包括过压保护,过流保护,防反接,储能/滤波电路等。下面是两个车载产品中的示例:示例1:12V电源进来后分别是LC滤波(防护电压波动),保险丝过流保护,TVS(高电压脉冲)防护,共模电感滤波(针对车载电源共模干扰);防反接保护在负极上;示例2:12V电源进来后分别是LC滤波(防护电压波动)/共模电感滤波(针对车载电源共模干扰),防反接保护,TVS(高电压脉冲)防护;这里没有保险丝过流保护,是因为这款产品使用了外置保险丝;下面分部介绍。 TVS(高电压脉冲)防护 在DCinput的时候,有时由于供电环境的变化会带来一些瞬时脉冲。而要消除瞬时脉冲对器件损害的最好办法,就是将瞬时电流从敏感器件引到地,一般具体做法是将TVS管在线路板上与被保护线路并联。这样,当瞬时电压超过电路正常工作电压后,TVS管将发生雪崩击穿,从而提供给瞬时电流一个超低阻抗的通路,其结果是瞬时电流通过TVS管被短路到GND,从而避开被保护器件,并且在电压恢复正常值之前使被保护回路一直保持截止电压。而当瞬时脉冲结束以后,TVS管再自动恢复至高阻状态,整个回路又回到正常电压状态。 这种防护只能应对由于供电环境的变化会带来一些瞬时脉冲,如果是电压输入不稳定,或者有长时间超过规定电压的情况,那么要用其他方法搭建限压电路,高于或低于规定的电压就进行截断电源的操作,相关知识可自行搜索。 TVS(Transient Voltage Suppressor)二极管,又称为瞬态抑制二极管,是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。 当它的两端经受瞬间的高能量冲击时,TVS能以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,把它的两端电压箝制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。主要用在具有静电和电压尖峰的电路中起保护作用。TVS工作过程上图是TVS的工作图形,首先解释几个TVS相关的参数:1、VRWM(最大反向工作电压):在这个电压下,TVS的功耗很小,使用时要使被保护电路的工作电压低于此值,以便TVS接入电路后不影响电路工作。2、VBR(反向击穿电压):这是TVS管通过电流IR时的电压,这是TVS管导通的标志电压,从此点开始TVS进入雪崩击穿。3、VCL(最大钳位电压):指当TVS流过IPP电流时的电压,是TVS管将电压尖峰钳制到的电位值。比如来了1000V、2000V的电压尖峰,都会被TVS钳制到VCL电平。VCL要小于被保护电路的最大耐压值,比如被保护芯片耐压30V,那么就要选VCL小于30V的TVS。4、IPP(最大反向脉冲峰值电流):是TVS允许通过的最大脉冲峰值电流,超过此值,TVS可能损坏。5、TVS管分为单极性和双极性,若TVS管有可能承受来自两个方向的尖峰脉冲电压(浪涌电压)冲击时,应当选用双极性的,否则选用单极性。6、CJ(结电容):电容量C是由TVS雪崩结截面决定的,这是在特定的1MHz频率下测得的。C的大小与TVS管的电流承受能力成正比,C太大将使信号衰减。因此,C是数据接口电路选用TVS管的重要参数。对于信号频率越高的回路,TVS的电容对电路的干扰越大,形成噪声或衰减信号强度也大。高频回路一般选择电容应尽量小(如LCTVS、低电容TVS,电容不大于3 pF),而对电容要求不高的回路,电容的容量选择可高于40 pF。选型:1、首先确定电路是否存在两个方向的电压尖峰,如果有就选双极性TVS,如果没有就选单极性TVS。2、确定电路的正常工作电压、最大耐压值,凭此来确定TVS的VRWM、VCL。3、大概评估电压尖峰的频率、幅值,从而确定TVS的功率,从而确定其封装。比如一个DCDC电路,正常工作电压24V,电源芯片耐压值为40V,电压尖峰能量并不大。那么TVS就要选单极性,VRWM大于24V,VCL小于40V的TVS,电压尖峰能量不是很大,封装可以选SOD123的。选择上图中的SMF24A是比较合适。 防反接保护 二级管型防反接保护电路1、通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示:这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管 MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。2、另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。 图1中,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降, 图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍。MOS管型防反接保护电路N沟道MOS管通过S管脚和D管脚串接于GND通路上,电阻R1、R2为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。正接时候,R2提供VGS电压,MOS饱和导通。反接的时候MOS不能导通,所以起到防反接作用。功率MOS管的Rds(on)只有20mΩ实际损耗很小,2A的电流,功耗为(2×2)×0.02=0.08W根本不用外加散热片。解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题P沟道MOS管通过S管脚和D管脚串接于电源和负载之间,电阻R1、R2为MOS管提供电压偏置,利用MOS管的开关特性控制电路的导通和断开,从而防止电源反接给负载带来损坏。正接时候,R1提供VGS电压,MOS饱和导通。反接的时候MOS不能导通,所以起到防反接作用。功率MOS管的Rds(on)只有20mΩ实际损耗很小,2A的电流,功耗为(2×2)×0.02=0.08W根本不用外加散热片。解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题VZ1为稳压管防止栅源电压过高击穿mos管。NMOS管的导通电阻比PMOS的小,最好选NMOS。NMOS管接在电源的负极,栅极高电平导通。PMOS管接在电源的正极,栅极低电平导通。R1和R2构成一个分压电路,给MOS管的栅极提供一个合适的电压让它可以导通,而VZ1则是保护MOS管的栅极不要超过它的门槛电压。而C1和R3可以理解为对电路的保护作用吧,电路未工作时,此刻可以通过C1和R3这两个器件构成电路中的交流信号滤除作用,也可以释放后面容性负载或者感性负载的能量释放。 过电流保护 多电流保护电路有很多种,最长使用的是保险丝。保险丝限流保护保险丝限流保护广泛应用于开关电源等电路当中,保险丝有自恢复和不可恢复的,PTC就属于可恢复的一种,保险丝的工作原理是电流发生异常时候,当功率升高到一定的强度时候,电流导致温度过热保险丝熔断,输入电路断开。其他还有多种方法,感兴趣的话可以自行搜索。 共模电感 采用共模电感滤波通常针对存在共模干扰的车载电路等环境,简单进行如下介绍。实际上,在电源中差模干扰和共模干扰往往同时存在,因此,电源滤波电路一般指将共如上图所示。模和差模滤波结合起来,Le为共模扼流圈,由于LC的两个线圈绕向一致,当电源输人电流流过LC时,所产生的磁场可以互相抵消,不会引起磁芯的饱和,因此,它使用导磁率高的磁芯。Le对共模噪声来说,相当于一个很大电感量的电感,故它能有效地抑制共模传导噪声。负载输入端分别对地并接的电容Cy对共模噪声起旁路作用。共模扼流圈两端并联的电容CX对差模噪声起抑制作用。R为CX的放电电阻,它是VDE-0806和IEC-380安全技术条件标准所推荐的。图中各元件的参数范围:Cx=0.1~2pF;Cy=22~33nF;Le=几~几十mH,随工作电流不同而取不同的参数值。如电流为25A时,Le=1,8mH;电流为0.3A;Le=47mH。扼流圈一般用高磁导率棒状磁芯材料,对于消除高频干扰效果很好,但对于大工作电流之情况,扼流圈的体积比较庞大,用以避免磁饱和。 pi型滤波电路 π型滤波器包括两个电容器和一个电感器,它的输入和输出都呈低阻抗。π型滤波有RC和LC两种,在输出电流不大的情况下用RC,R的取值不能太大,一般几个至几十欧姆,其优点是成本低。其缺点是电阻要消耗一些能量,效果不如LC电路。滤波电容取大一点效果也不错。LC电路里有一个电感,根据输出电流大小和频率高低选择电感量的大小。其缺点是电感体积大,笨重,价格高。现在一般的电子线路的电源都是RC滤波。很少用LC滤波电路.在SoC的电源输入端,常常采用磁珠+电容的pi型滤波电路(如下图),滤除电源上的高频噪声。在模拟器件的电源输出端,常常采用RC的pi型滤波电路,滤除电源上的低频噪声。