开关电源的原理及选型(DC-DC) 使用开关电源关注参数: 1.输出精度 2.纹波 3.动态响应速度 4.温度 5.效率 开关电源原理: 1.通过开关的打开和闭合产生周期性的方波,如12V的输入电压,5V的输出电压,则方波的高低电平的比例是5:7;也就是PWM波,通过改变方波的占空比来调整输出。 为方便记忆:可以将开关电源里内部的开关理解成小人才周期性的打开和闭合开关。 实际设计中,开关是用mos管代替的,内部有反馈控制电路用于控制,开关的闭合频率,调整高低电平的比例,达到输出平缓的电压。 波形分析: 负载处的实际的电压波形,如12V波形所示,而我们所需要的是5V所示的波形,从图中可以看出,在相同时间内,两处的面积是相等的,所以我们只是需要将12V的电压波形,滤波成5V即可。 加入电容后,将多余的电能储存起来,似乎就可以得到输出平稳的波形;实际输出的电压波形,也不是我想要的波形,且电流波形也会有尖刺,原因是电容两端电压不能突变。 理论上du突然变大,时间dt无穷小,导致电流无穷大。 当开关闭合的时候,电容的两端也因为电压瞬间增大到12V,导致芯片的输出电流瞬间变成无穷大,也就是尖峰电流。 解决电流突变的办法:可以加入个电阻,R1通过测量确实可以产生输出电压5V的电压; 但电阻本身消耗能量,发热明显。所以可以我们可以将电阻用电感替换(电感理论上是不消耗能量的),且电感两端的电流不能突变。 加入电感后电流波形如上,看上去解决了电容的充电电流过大的问题,但实际上,电感的电流是不能突变的,所以当mos管断开的时候,电感的一端悬空了,电流无法释放。所以给电感加入一个续流二极管,给电感提供一个释放电流的回路。 也就是说有电感的时候必须要有续流回路,原因是电感上的电流不能突变。 DC-DC拓补图就出来了,简要分析下: a点电压波形是周期性矩形波,b点电压经过电感,电容滤波,输出平稳的电压(肯定有纹波的存在),电流波形:电流被分成了两部分,负载上是直流分量,交流分量在电容上流过。 同步整流,异步整流 当续流二极管用mos管代替时,而且要保证两个mos管的开关性相反,这就是同步整流电路,优点:功耗低,效率高。 开关电源的选型-同步整流 开关电源内部包含mos管,适用于小电流的场景,一般小于5A,称为转换器。 开关电源内部不包含mos管,根据电流的使用场景,选择外部的mos管,称为控制器。 举例:输出电流3A 所以可以采用转换器。 芯片选择(DC-DC) 1.先从厂家入手(国产:微盟,芯龙,矽力杰,钰太。国外:TI,mps,adi等) 2.选择电压范围 3.输出电流 4.静态电流-输出电流为0的时候需要消耗的功率,一般低功耗需要考虑。 5.反馈电压 6.开关频率 7.同步或者异步,一般选择同步 8.封装-选择好焊接的-是否好购买 外围电感和电容的选型 1.电感选择-手册有详细说明 饱和电流:电流增加,电感的感值将减小,当电感感值小于一定数值时,电感就失去作用,此时电流为饱和电流。 所以电感的饱和电流最少要4.2A以上 2.输入电容 3.输出电容 总结: 详细说明: 1.输入/输出电压(Input &Output Voltage):Vin/Vout 要按照器件的推荐工作电压范围选用,并且要考虑实际电压的波动范围,确保不能超出器件规格。 2.输出电流(Output Current):Iout 器件持续的输出电流能力是一个重要的参数,选用时要参考此参数,并要保留一定的余量。 此参数的选取还要评估电路的瞬间峰值电流和发热的情况,综合来确定,并满足降额要求。 3.纹波(Output ripple):Vpk-pk 纹波是衡量电路的输出电压波动的重要参数。要关注轻载和重载纹波,一般轻载纹波要大。注意核电等场合下轻载纹波是否会超出要求。实际测试下各种场景负载下的情况。通常选用示波器20M带宽来测试。 4.效率(Efficiency): 要同时关注轻载和重载两种情况。轻载会影响待机功率,重载影响温升。通常看12V输入,5V输出下10mA的效率,一般要80%以上。 5.瞬态响应 (Transient response): 瞬态响应特性反应负载剧烈变化时系统是否能及时调整以保证输出电压的稳定。要求输出电压波动越小越好,一般按峰峰值10%以下要求。 实际要注意按推荐值选用反馈电容。常见取值在22p到120pF。 6.开关频率(Switching Frequency):fsw 常用的开关频率多数在500kHz以上。较高的开关频率1.2M到2M的也有,由于频率高开关损耗增加IC散热设计要好,故主要集中在5V低压输入小电流的产品。开关频率关系到电感电容的选用,其它如EMC,轻载下噪音等问题也与之有关。 7.反馈参考电压及精度(Feedback Voltage &output accuracy):Vref 反馈电压要与内部的参考电压相比较,配合外部的反馈分压电阻,输出不同电压。不同产品的参考电压会有不同,如0.6~0.8V,替换时注意调整反馈电阻。反馈电阻要选用1%精度,只要根据厂家推荐来选,一般不要选的过大,以免影响稳定性。 参考电压精度影响输出准确度,常见精度在2%以下,如1%~1.5%,精度高的产品成本会有差别。根据需要选择。 8.线性稳定度和负载稳定度(line/load regulation): 线性稳定度反应输入电压变化输出电压稳定性。负载稳定度反应输出负载变化输出电压稳定性。一般要求1%,最大不要超3%。 EN电平: EN高低电平要满足器件规格要求,有些IC不能超出特定电压范围;电阻分压时注意满足及时关断,并且考虑电压波动最大范围内要满足。由于时序控制的需要,该引脚会增加电容,为了电平调节和关断放电,同时要有对地电阻。 10.保护性能: 要有过流保护OCP,过热保护OTP等,并且保护后条件消失能自恢复。 11.其它: 要求有软启动;热阻和封装;使用温度范围要能覆盖高低温等。 外围器件选择的要求 1.输入电容:要满足耐压和输入纹波的要求。一般耐压要求1.5~2倍以上输入电压。注意瓷片电容的实际容量会随直流电压的偏置影响而减少。 2.输出电容:要满足耐压和输出纹波的要求。一般耐压要求1.5~2倍 。 纹波和电容的关系: BST电容:按照规格书推荐值。一般0.1uF-1uF。耐压一般要高于输入电压。 3.电感:不同输出电压的要求感量不同;注意温升和饱和电流要满足余量要求,一般最大电流的1.2倍以上(或者电感的饱和电流必须大于最大输出电流+0.5*电感纹波电流)。通常选择合适的电感值L,使ΔIL占输出电流的30% to 50%。计算公式: 4 VCC电容:按规格书 要求取值,不能减小,也不要太大,注意耐压。 5.反馈电容:按规格书 要求取值,不同厂家芯片取值不同,输出电压不同也会有不同的要求。 6.反馈电阻和EN分压电阻:要求按规格书取值,精度1%。 PCB设计要求 1.输入电容就近放在芯片的输入Vin和功率的PGND,减少寄生电感的存在,因为输入电流不连续,寄生电感引起的噪声对芯片的耐压以及逻辑单元造成不良影响 。电容地端增加过孔,减少阻抗。 2.功率回路尽可能的短粗,保持较小的环路面积,较少噪声辐射。SW是噪声源,保证电流的同时保持尽量小的面积,远离敏感的易受干扰的位置。如,电感靠近SW引脚,远离反馈线。输出电容靠近电感,地端增加地过孔。 3.VCC电容应就近放置在芯片的VCC管脚和芯片的信号地之间,尽量在一层,不要有过孔。 4.FB是芯片最敏感,最容易受干扰的部分,是引起系统不稳定的最常见原因 。 1)FB电阻连接到FB管脚竟可能短,靠近IC放置,减少噪声的耦合;FB下分压电阻通常接信号地AGND; 2)远离噪声源,SW点,电感,二极管(非同步buck);FB走线包地; 3)大电流负载的FB在负载远端取,反馈电容走线要就近取。 5.BST的电容走线尽量短,不要太细。 6.芯片散热要按设计要求,尽量在底下增加过孔散热。
最近项目用到了开关电源给BMS充电的内容,由于我一直是做软件的,对硬件也是一窍不通,所以自学了一段时间,借此希望能入门(入坑)硬件,希望也对读者有帮助。 为什么选用开关电源(电池包充电器)入门硬件比较合适? 我认为主要原因有几个1.因为我现在就在做相关项目1.开关电源可简单可难。最简单DC/DC的buck电路,只需要一个电源芯片和几个电容即可完成。但是当需要考虑散热、效率、负载对电源输出纹波要求,电压电流调节,EMC等等,整个项目就会变得很复杂。 2.电池包充电器属于AC/DC架构,需要把对初级和次级进行隔离和保护。同时需要给电池包21V充电(涓充、恒流、恒压),需要可以调节充电器输出的电压电流。 3.调节电压电流,做充电模式转换,做过压欠压,过温低温,过流等等保护,那么就需要单片机,这里就涉及到LDO的相关知识。 4.电池包充电器的整个拓扑结构,涉及到的元器件有:保险丝、电容(X电容、Y电容、陶瓷电容、铝电解电容、钽电容)、电感、电阻(分压电阻、检流电阻、NTC、压敏电阻)、磁环、变压器、MOS管、三极管、LDO、光耦、二极管(整流二极管、肖特基二极管)、LED灯、电源管理芯片……基本上把常用元器件涵盖在内了。 5.在测试充电器性能时,需要用到的设备非常多,包括:万用表、可调输入电源、电子负载仪、示波器、电流检测仪…… 6.电池包充电器,那当然需要了解锂离子电池的诸多特性了。同时,智能充电器可能需要与电池包进行通信,这里就增加了一个通信的问题,即如何做到稳定可靠的通信?等等等等,不一而足。 好的电源在系统中起到什么作用? 项目进行的过程中,慢慢地对电源有进一步的认知。站在一个消费电子用户的角度看,以前我总认为电源挺讨厌的,在一个系统里占据了大量的空间,还会发热浪费了宝贵的电力资源,更有可能电源自身会故障,使整个系统瘫痪。但是,当我真正开始了解电源时,我才了解电源在整个系统的位置是那么地重要,一个好的电源,可以让给各种用电设备进行供电,保护系统不受外界严酷的环境受到干扰。 电压稳定:优质的电源能够稳定输出电压,避免因电压波动导致设备损坏或性能下降。 电流过载保护:当电流超过设备或线路的承载能力时,电源会自动切断电流,防止设备损坏或火灾等安全事故。 电磁干扰抑制:好的电源设计能有效抑制电磁干扰(EMI),确保系统内部的数据传输和信号处理不受外界电磁场的影响。 高效节能:高效的电源转换效率意味着更少的能量损失,这不仅有助于降低运行成本,还有助于节能减排。 长寿命:优质电源的元器件和材料都经过精心挑选和测试,确保电源具有较长的使用寿命和稳定的性能。 低噪音:好的电源在运行时产生的噪音较低,为用户提供一个安静的工作环境。 智能管理:现代电源往往具备智能管理功能,如远程监控、故障自诊断等,方便用户进行设备管理和维护。 上面引用的部分是GPT的回答,我在设计电源时,确实对这一部分有了更多的认识。例如, 当电机堵转时,电源(电机驱动部分)可以识别瞬间电流过大,提供堵转保护。 当用电设备短路时,电源可以识别到输出电流瞬间过大启动短路保护或输出电压过低而启动低压保护。 当给设备供电的对象是电池时,电池电压会随着放电的进行而降低,此时可以用buck、boost、buck-boost电路给负载供电,保证给到负载的电压稳定。同时,当电池电压过低时,可以进行过放保护,延长电池的使用寿命。 当充电器给电池充电时,例如充电器空载是21V,电池电压是18V,如果直接打开充电器的MOS管,此时相当于两个电容(电池可以看成是超大电容)并联,那么会有瞬间的大电流,此时可以进行软启动,启动电流由过去不可控制的过载冲击电流变为可控制的电流,减小起动时的冲击和压力,避免对设备(充电器、电池)和电网造成过大的负荷。 什么是开关电源 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。它可以分为隔离式的开关电源和非隔离式的开关电源。 其实,就是对能量的一种转换,其中的核心是PWM控制。开关电源拓扑 开关电源的拓扑结构有很多种,包括但不限于Buck、Boost、Buck-Boost、Flyback、Forward、Two-Transistor Forward、Push-Pull、Half Bridge等。这些拓扑结构都与开关式电路有关,可以根据不同的应用场景和需求进行选择。其中,Buck降压拓扑结构的特点是将输入降至一个较低的电压,其电路简单,电感/电容滤波器滤平开关后的方波,输出电流平滑;Boost升压拓扑结构则是把输入升至一个较高的电压,与降压结构类似但电感等元件的安排方式不同;Buck-Boost降压-升压拓扑结构是电感、开关和二极管的另一种安排方法;Flyback反激拓扑结构类似于降压-升压电路,但电感有两个绕组并同时作为变压器和电感;Forward正激拓扑结构是降压电路的变压器耦合形式;Two-Transistor Forward双晶体管正激拓扑结构则是两个开关同时工作,开关断开时存储在变压器中的能量使初级的极性反向使二极管导通;Push-Pull推挽拓扑结构则是开关(FET)的驱动不同相进行脉冲宽度调制(PWM)以调节输出电压;Half-Bridge半桥拓扑结构则是较高功率变换器极为常用的拓扑结构。在实际应用中,可以根据需要选择适合的拓扑结构以满足性能和效率的要求。 AC/DC是开关电源的一种。这种电源经过高压整流滤波得到一个直流高压,供DC/DC变换器在输出端获得一个或几个稳定的直流电压,功率从几瓦-几千瓦均有。 DC/DC开关电源是一种将直流电能转换为另一种直流电能的装置,它主要由开关管、储能元件、二极管和滤波器等组成。DC/DC开关电源可以根据不同的电路设计和控制方式,实现不同的电压变换和电流控制。 可以看出AC/DC是包含了DC/DC的部分。所以,接下来主要将AC/DC。 AC/DC的实现步骤 AC/DC(交流/直流)是指电源的规格是交流输入直流输出,属于开关电源分类中的一种。对于AC/DC的实现,需要以下步骤: 输入滤波:输入滤波器用于抑制电源噪声和防止电网干扰进入电源。 整流滤波:通过整流器将交流电转换为直流电,同时使用滤波器消除脉动直流电压中的交流成分。 功率转换:通过开关电源电路将直流电转换为高频脉冲信号,然后通过变压器将高频脉冲信号耦合到副边,再通过整流滤波得到输出直流电压。 输出滤波:输出滤波器用于抑制纹波和噪声,以确保输出直流电压的稳定性和精度。 稳压控制:通过控制开关电源电路的占空比,实现输出直流电压的稳定控制。 需要注意的是,AC/DC电源的电路拓扑结构和控制方式可以根据实际应用场景和负载需求进行选择和设计。同时,为了确保AC/DC电源的可靠性和稳定性,还需要进行合理的热设计和电磁兼容性设计。 拆解一个手机充电器(5V2A) 这应该算是最简单的AC/DC充电器了。左边是AC输入,带色环的是保险丝,经过一个整流桥和大电容组成输入整流滤波电路;左下角铝电解电容和安规电容构成EMC区域;中间8pin的DIP封装的是CSC7203,为AC/DC芯片;中上部分一个蓝色的电容,它的上面是一个电阻,还有变压器底下藏着的一个二极管,共同构成RCD电路,主要是吸收MOS管的电压尖峰,防止MOS管被烧坏;CSC7203下面是一个光耦,反馈的作用(原边和副边隔离);绿色大个的是一个变压器,起到功率转换的作用;右边的二极管和两个电容起到输出整流滤波的作用;右下角的USB,是将输出通过USB线给手机充电。 反激电路的原理 反馈电路的计算 孙老师提到的这里,他一句话带过,其实是这样的:Vout的计算公式如下:I = 2.5V/R2 且 I = V+ /(R1+R2)故V+ = 2.5*(R1+R2)/R2TL431会把R2上方电压Vref稳定在2.5V,假如Vout是5V,那么R1两端承受的电压为2.5V,那么就知道R1与R2的比值为1:1。假如输出电压变高,由于R2上的电压Vref高于2.5V,那么会导致流经TL431的电流变大,光耦PC817的灯变亮,导致晶体管阻值变小,CR6885的FB端电压变小(FB内部有一个电阻),GATE输出的占空比变小,使电压稳定在5V。 输出电压控制 原来R4和R5分压,使得V+为5V如果用单片机控制三极管,就可以让R5和R6并联,等效电阻为5K,那么此时的输出为((5+10)/5)*2.5=7.5V。适当调整电阻阻值,就可以控制输出电压大小。版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,原文链接:https://blog.csdn.net/weixin_45817947/article/details/134769302
注意其实除了时序设计,其中的功耗设计等都是需要注意的。LDO 的结构是一个微型的片上系统,它由电流主通道的、具有极低在线导通电阻 RDS(ON) 的MOSFET、肖特基二极管、取样电阻、分压电阻、过流保护、过温保护、精密基准源、差分放大器、延迟器、POK MOSFET等专用晶体管电路在一个芯片上集成而成的。LDO 的工作原理是通过负反馈调整输出电流使输出电压保持不变。即 Voltage Contr 电源架构介绍部分 一、单板电源架构介绍-集中式与分布式 1.1集中式 在下图中,左边为集中式,直接所有电源都通过 48V 独立转换出来。缺点:每个需要的电源都要采用一个 DCDC 模块,成本比较高,PCB面积也大,在高速板的设计中不采用集中式。 1.2分布式 在下图中,右边为分布式,采用两级转换。第一级隔离模块 描述:提供输入电源到单板中间电源的转化,转出来有少部分可以供电直接用。 功能:提供中间电源和单板隔离的作用,因此允许较大的纹波和噪声。 第二级非隔离芯片:采用非隔离式的如DCDC、LDO转化成最终使用电平。其中中间电源也不止一个值。 1.3比较 分布式相比较集中式,只需要一个隔离模块,可以有效的节约成本和 PCB 面积,但是效率比一级转换效率要低一点点。 二、单板电源介绍 2.1单板电源转换示意图(分布式) 2.2上电时序严格要求 注意其实除了时序设计,其中的功耗设计等都是需要注意的。 2.3具体实现上电时序的办法 2.3.1软启动 (1)描述SS脚的软启动,进行延时启动。软启动为同时使能芯片,但是是通过调整 SS 脚外部的自举电容来控制启动时间。容值越大斜率越小,启动越慢。(2)缺点 对温湿度敏感 在左边图形中,要求 V1 达到稳定电压后一段时间,V2 才上升到稳定电压。但是通过电容大小的这种控制方法,很有可能存在 V1 还没有稳定时,或者刚到稳定时,V2 的电压就已经起来到中间某电压了(虽然可能不是到达稳定值),这中间的某电压也可能导致 V2 供电的部分模块已经开始工作、输出了。 因为电容只那能控制上升的斜率。 2.3.2硬启动 硬启动为控制使能脚从而控制芯片的工作与否,硬启动需要控制信号,延时时间较为固定。在下图右边的例子中可以将 V1 上电完成后,某输出作为 V2 的分时使能芯片(EN 脚)。这就避免了上面软启动的缺点。 LDO介绍部分 一、LDO简介 1.1工作原理 LDO 的结构是一个微型的片上系统,它由电流主通道的、具有极低在线导通电阻 RDS(ON) 的MOSFET、肖特基二极管、取样电阻、分压电阻、过流保护、过温保护、精密基准源、差分放大器、延迟器、POK MOSFET 等专用晶体管电路在一个芯片上集成而成的。LDO 的工作原理是通过负反馈调整输出电流使输出电压保持不变。即 Voltage Control 获取 Vref 的电压跟内部参考电压比较,根据比较结果控制电流源,即调整 RDS 的大小。LDO 是一个步降型的 DC/DC 转换器因此 Vin >Vout。 1.2 LDO的构成 在下图的结构中,电容 是为了给输入的基准电压信号提供交流信号部分泄放回路。这个过程也叫:过滤、耦合。 1.3 LDO的符号 常用的 LDO 中,以3、4、5 Pin为多。封装则种类繁多,从一毫米平方的大小,到 TO-220 封装都有,主要取决于 LDO 的输出功率及器件本身的功耗。 1.4 LDO Pin 脚及相关功能 INPUT 电源输入端 OUTPUT 电源输出端 GND 接地端 EN 使能端,以开关LDO BP 旁路电容端。以降低噪声,提高 LDO 的 PSRR FP ADJ LDO反馈取样端 1.5 LDO常用参数简介 (1):Input Voltage(2):Output Voltage(3)Output Voltage Accuracy(4):Maximum Output Current(5):Current Limit(6):Ground Pin Current(7):Dropout Voltage 电压差,压差越大效率越小。(8):Line Regulation(9):Load Regulation(10):Output Voltage Noise(11)PSRR:Power Supply Rejection Ratio(12):Shutdown Supply Current 二、LDO应用相关 2.1周边器件的选择 周边器件有:,,,, 电容的选择:数值大小影响做噪和响应速度 ,ESR(电容串联等效电阻,越小纹波越小) 影响电源系统的稳定性 电阻的选择:数值大小影响输出电压的准确性 2.2布线对性能的影响 下图原理图中虚线是电流的回流路径。在布线中要注意一下几点:(1)一点接地在原理图(上)中,电容分别接地,还经过了电阻,滤波效果不是最佳;在原理图(下)中,电容全部直接一点接入地下,滤波效果最佳。这就是单点接地,教育完成了闭环。(2)去耦支路,尽可能短。前后两头都尽量的短。从芯片出来尽量短,回流到地也尽量短。(3)大电流线,尽可能短(4)做好散热设计 原理图 下图是 PCB 示意图,较好的LDO PCB设计实例---1点接地。图1的PCB布线较好,图2的较差。 PCB 2.3电容的选择 (1)典型 LDO 均需增加外部输入和输出电容器。(2)部分 LDO 尚需 Reference-Noise Bypass 电容及补偿电容。(3)常选用: 陶瓷电容 优点:低价,低ESR,小尺寸; 不足:失效模式为短路。 铝电解 优点:可自愈,低价; 不足:体积大,老化率高。 钽电容 优点:体积小,等效并联电阻高; 不足:自燃,有极性。 薄膜电容,宜作补偿电容用 优点:温度稳定性好; 不足:较贵,体积大。 2.4外部电路对LDO工作的影响 (1)输入端电源内阻不宜过大(压降)引线不宜过长过细(2)输出端不适当的负载(如大电容、过大负载、非线性负载等)不适当的连接(如并联输出)(3)BP端根据电路需求选择合适的 值 2.5案例 SOT23封装的 LDO 的实际电路如下图所示。图中,= 5V ,=1.8V故可知:热功率 2.6线性电源和开关电源的优缺点 2.6.1 LDO的特点 (1)优点 非常低的输入输出电压差 非常小的内部损耗 很小的温度漂移 很高的输出电压稳定度 很好的负载和线性调整率 很宽的工作温度范围 较宽的输入电压范围 外围电路非常简单,使用起来极为方便 (2)缺点 输入输出压差大时,转换效率低 2.6.2开关电源的特点: (1)优点 转化效率高。 功率转化密度高。 (2)缺点 开关噪声高,对开关噪声高的电路不太合适。 输出纹波电压较高。 电压调整率等性能也较差。 二、DC-DC中BUCK开关电源 2.1电路简介 Buck 变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。Q 为开关管,其驱动一般为 PWM ( Pulse width modulation 脉宽调制) 信号,信号周期为 ,则信号频率为 ,导通时间为 ,关断时间为 ,则周期 ,占空比 。负载大,占空比也大,成正比关系。 2.2内部结构 在下图中仅解释一下,集成电路控制器(IC Controller)其实是 PWM 波控制器件(PWM Controller)。其中磁学就是指电感。 2.3内部结构框图 内部结构框图的中英文框图图如下。(1)IC Controller(2)PLLLPF:电路补偿反馈环路(4)电容:滤波,当负载变化时,给输出提供一个“可充可泄的小池塘”(5)电感:两端电压不能突变,过滤尖峰电压,产生小的纹波。电感是通过磁场将噪声反射掉,并提供另一个更容易泄放通路,这一点注意和磁珠区别。(6)Low :电流流经的时候,功耗小。 低门限:更容易驱动(7)高压地和低压低隔开,实现单点接地,噪声、纹波都隔开了 2.4 LTM6420 内部框图 比较复杂的芯片,后续使用中可以去看数据手册把~ 2.4.1注意事项 LTM4620A 电源芯片是降压型的电源模块。(设计的时候要确认是升压还是要降压) 宽范围的输入电压: 4.5V~16V。(设计时要确认输入电压是否在这个范围之内,降压型的芯片Vin 要大于 Vout ) 输出电压: 0.6V~5.3V。(设计时要确认此电源模块能否输出所要电压,注意 LTM4620 的第二路采用差分输入时,Vout 要小于 3.3V) 工作频率的设定:开关频率高了优点:相同的输出电容纹波更小,动态响应更好。 缺点:开关损耗更高,开关噪声的能量更高。 开关频率低了优点:开关损耗更低,开关噪声的能量更低。 缺点:是相同的输出电容纹波更大,动态响应更差。 根据以上特性选用中间值500KHZ的工作频率。 设计时要注意电源芯片的工作温度。(如果工作温度不满足可能会导致输出电压不正常的问题) 对电源模块的工作模式的选择 电源模块使用在轻负载条件时,采用 BURST(连续工作模式)/Pulse-Skipping(断点工作模式) 模式,可以提高转换效率。 重负载时采用连续模式 BURST(连续工作模式),纹波小,电源的动态响应好(如果采用BURST/Pulse-Skipping模式会造成输出电源纹波大,动态响应差的情况,并且重负载时不可以使用断续模式。)。 输出电压设定。注意如果有多路并联或者多片并联要注意内部上拉电阻是否也并联了。如果有计算时要用内部的上拉电阻除以并联数。 软启动的设置。根据电压启动需要的次序设置几个电源模块的 SS 的电容。使其产生需要的上电次序。注意:电容设置过大会造成电源启动过缓,出现CPU启动异常的现象。太小会出现电源启动不起来的情况。 PhaseMd 的设置:如果是单片时设置两路输出的相差。设置为 45~60 度。 track 的设置:如果两路有依存关系,使用 track 设置启动方式,亦可以使用一路的 PG 接到另一路的 R U N 脚来控制启动次序。 输入电容,输出电容的选用: (1)采用低ESR的高频电容 (2)注意输入,输出电容的容量,耐压。 (3)布局时尽量靠近电源模块。 (4)电容采用大电容,小电容,大封装,小封装的配合使用(低频高频波)。 (5)充分考虑电容在高温,低温下电容的容量的变化,余量要留够。 (6)考虑电容的工作寿命。(特别是高温工作) 三、设计注意事项及案例分析 3.1快速瞬态响应 翻译:通常1或2个散装电容器就足够了,但如果需要更快的瞬态响应,可以增加更多的 。右图就是对负载电流变化的快速响应。 3.2温度对输出功率的影响 3.3多片并联注意均流问题 注意:详细看资料对两片需要接在一起的位置一定要联接!!如:SBC8640M-A12 V1.0,两个4620电源并联使用时,用于相位匹配的CLK没有互连,但输出连接到一起,造成两个片子电源冲突,输出不正确呈振荡现象。 3.4注意反馈环路的参数的选取 如:SBC8640M-A10 V1.0 板上测量到 CPU 核电压纹波过大,达 3~400mV. 设计上在 4620 的差分反馈链路上加入一个过大的滤波电路的关系,该电路造成 4620 反馈减缓,造成输出纹波变大。反馈电容一般是pF级,图中使用了 10nF。 3.5电源供电 (1)注意CPU是用哪个电源供电,如果选择不当可能产生冲突如 RC3358I-M4-CPU 主板 V1.1 在焊接上 ARM 芯片后,板上用于 ARM 供电的芯片则无输出 ARM 芯片 (AM3359) 的 RTC 供电通过外部设置选择采内部供电,或者外部供电。板子设计上设置为 ARM 芯片内部 LDO 供电,同时外部电源芯片的供电未断开,造成了电源冲突;导致TPS65910AA1RSL 关闭,其他路电源也没有输出了。(2)注意对电源的MODE的应用,如Continuous,BURST,Pulse-Skipping如 SBC8640I-AD4 V1.0 V2.0 SRIO SW(1848) 板间互联低温下小概率测试错误,3.125G降为1.25G依旧(误差大于3%)。测试发现1848工作电源1.2V纹波较大,进一步分析确认其为burst模式本身文波会较大,更改为连续模式问题解决。BURST,Pulse-Skipping模式应用在轻载的电路,如果突然需要大电流输出电路的纹波就比较高。 3.6注意电源的低温输出偏离的问题 如 sbc1022m-ab4 在 -55 度低温测试时发现 3.3v 输出只有 3.15V。经过反复测试发现在低温( -55度)是电源的 VREF 参考电源( VSENSE )从 0.891V 变位 0.85V 即低温使参考变坏造成输出电压偏低。 3.7 注意设备是否正常 调试时注意ATX电源,万用表,示波器等设备是否正常 由于现在板卡的功耗很高,在调试时要注意接的电源线足够的粗,否则线压很高,造成到达板卡时压降很高,使得电源芯片电压不够造成工作异常 调试前先确认电源输出是否正常。(当时在调试B20板卡时,发现启动一直不正常,一直怀疑是复位问题,复位信号是反复出现。经过反复测试才发现是ATX电源输出不正常,本该输出5V的,带载后只有4.5V,空载测试可以输出5V。有些ATX关机后,立马开机,启动输不出电压等问题 测试电压时,注意示波器(非隔离)的地是否跟ATX电源已经共地,如果共地不要将示波器的夹子(地线)触碰板卡的电源通路。 万用表使用时确认是否电池没电了,如果电池电压不够可能测量不准确。 由于我们使用的ATX电源的限流很高,在调试时要注意不要接反(电路没有防反接保护)。上电前要先测试输入阻抗是否正常,如果不正常可能会损坏板卡。 3.8注意电源的负载与效率的关系 注意电源的效率跟输入电压,输出功率有很大的关系。如果负载只有额定功率的 10%,电源的效率就不高,在 50% 的额定功率时输入输出压差越小效率相对越高。(不同电源芯片特性可能不同,以资料为主) 3.8注意电源的其他设计问题 注意输入,输出电容的容值,耐压,封装。注意调压电阻的参数,防止错误,出现烧毁板卡的问题。输入,输出电容尽量靠近电源芯片。大电容靠近电源,小电容其次。注意电源芯片的散热。尽量不要将热点集中。 3.9注意电源的PCB设计问题 Vin、和Vout使用大面积铺铜,提供更大的电流路径,帮助热传导。 在Vin、和Vout的高频电容尽量靠近IC.减小引线感抗。 SGND,GND通过一个通道联通。 在器件下铺一个电源地层。防止电源的开关噪声对其他信号产生影响。 过孔不要直接放在焊盘上,防止虚焊。 布局是尽量不要让热点集中。 对热敏感的原件(如:ADC,恒温晶振等)不要放在电源旁边。
在硬件面试经典中的第 86 题中提到的反激式开关电源,是通过开关通断将交流转变成直流的 AD-DC 开关电源的一种,并且反激式开关电源是由 BUCK-BOOST 电路演变而来,所以博客由浅入深一步一步讲解完反激式开关的知识,让我们开始吧! 一、升降压电路( BUCK-BOOST 电路) 在博客DC-DC基础知识 + 硬件电路_dcdc电路-CSDN博客中介绍了升压(BUCK)和降压(BOOST)电路,但是没有介绍升降压电路(BUCK-BOOST电路),现在简单介绍如下。 1.1电路简介 电路结构如下图,电路图由以下部分组成: MOS 管:开关电源的开关。接受PWM波形信号,高电平管子打开,低电平管子关闭。 电感 L :充放电。吸收电源的能量,并向后级电路释放。 二极管 D:指定电流的流向。 电容 :平滑输出电流。 图1.1 BUCK-BOOST 电路原理图 1.2 MOS 管打开 当在 PWM 波高电平时,MOS 管打开,电源给电感充电,在电感上形成上上正下负的电压。图1.2 1.3 MOS 管关闭 当在 PWM 波低电平时, MOS 管关闭,电感上的电源突然撤走,电感上感应出与电源供电方向相反的感应电动势,形成如下图的电流方向给负载供电。图1.3 1.4电路说明 1.4.1升降压 BUCK-BOOST 电路输入输出存在公式(理想公式):其中 D 为 PWM 波的占空比,就是通过调节占空比来实现升降压: 当需要升压时 ,调大占空比,让电感可以吸收更多的能量,增大感应电动势; 当需要降压时,调小占空比,让电感不吸收很多的能量,减小感应电动势。 1.4.2注意 上述介绍的电路是最简单、最理想的 BUCK-BOOST 电路,只是为了说明一下电路原理,有很多问题都没有说清楚,如: 如果供电电源负极是地的话,那么在电路图上二极管正极那一点的电压其实是负电位,需不需要抬高? 供电电源如果是电池或者输出没有达到预期,需不需要添加输出到 PWM 波控制电路的反馈? BUCK-BOOST 电路原理很久就提出了,有没有好用、简单的芯片?怎么选择?等等 在硬件面试经典中的第 86 题目给出的电路图,其实就是将上述的 BUCK-BOOST 电路图中的电感换成了变压器,我们逐步来展开介绍。 二、手机充电器原理 2.1初代电源原理 下面是最初代手机充电器的原理,最终可以得到输出稳定的 5V 电源给手机充电。图2.1 但是这种手机充电器很少被使用,原因: 线性电源功率密度低; 发热严重; 体积大。 图2.2 2.2现代开关电源原理 其中仍然有全桥整流电路和变压器,但排列位置发生了变化,同时原来的 LM7805 被一颗 MOS管和控制芯片取代。看到下面的电路,就发现和最开始的 BUCK-BOOST 电路的相似之处了。图2.3 产生了一个方波加在了变压器的左侧绕组上,在变压器的右侧绕组上感应出另一个比较小的电压,经过滤波,就输出 5V 的直流电 (后面会详细讲解)。 2.3比较两个电路 2.3.1变压器体积更小 第一个电路中 220V 的交流电被直接送入变压器,然后输出经过整流滤波就变成了直流电;第二个电路就比较麻烦了,先把 220V 的交流电整流滤波变成直流电,然后将直流电转变成方波才送入变压器中,最后输出直流电。之所以弄得这么麻烦,就是为了减小体积和减少发热。最初的 220V 交流电频率只有 50HZ,而送入变压器的方波频率可达 65KHZ 甚至更高,频率更高的好处就是可以使用更小的变压器。 为什么更高频率的信号就可以使用更小尺寸的变压器?1、变压器的基本原理 变压器的大小主要取决于其铁芯和绕组的尺寸,而这些尺寸与变压器要传输的功率和频率有关。对于给定的功率输出,铁芯的大小(体积)决定了变压器能否有效传输和转换能量,而绕组的线圈数量影响了感应电压的多少 公众号@电路一点通。 2、频率与变压器尺寸的关系 磁通密度与频率:在变压器中,磁通密度(磁场在单位面积上的强度)与施加的交流信号频率成反比。较高的频率意味着磁通在单位时间内变化更快,因此在相同的磁通密度下,铁芯每周期只需要承受较少的磁通变化量。这就意味着使用高频率时,可以用较小的铁芯而不会达到铁芯饱和的情况。 铁芯材料的利用效率:高频信号下,变压器的铁芯材料在高频下的利用率更高。换句话说,在高频率条件下,可以用更少的铁芯材料(即更小的变压器)来传输相同的能量。 3、高频率的其他优势 绕组匝数减少:在高频条件下,由于每周期的时间较短,可以用较少的匝数来达到所需的感应电压。这进一步减小了绕组的尺寸和重量。 变压器的电感和电容效应:在高频条件下,变压器的电感效应更为明显,而漏电感和分布电容的影响相对变小,这样可以设计更紧凑和高效的变压器结构。 2.3.1开关电源取代线性电源 由 MOS 管输出的受控方波,就可以添加反馈回路至控制器通过实时调节方波的占空比来稳定输出电压。以上方案替换掉 LM7805 稳压器,是由于 LM7805 稳压器是线性稳压器,效率低,发热严重。 1. 线性稳压器的工作原理 线性稳压器通过连续调整其内部的电阻来维持稳定的输出电压。当输入电压高于所需的输出电压时,线性稳压器通过将多余的电压转化为热量的方式来降低电压。这是线性稳压器工作的基础: 简单的等效电路:线性稳压器可以被简单地等效为一个可变电阻(或三极管)与负载串联。当输入电压升高时,稳压器会增加其内部电阻,以确保输出电压保持恒定。 能量转换:任何超过输出电压需求的能量都被转化为热量在稳压器上消耗掉。这意味着线性稳压器的效率主要取决于输出电压和输入电压之间的差异。 2. 开关电源的工作原理 开关电源通过高速开关元件(如MOSFET)打开和关闭,以控制输入电压和输出电压之间的能量传递。开关电源通过储能元件(电感和电容)将电能转换和传输。以下是开关电源的关键特点: 高频开关:开关电源工作在高频状态下(通常在几千赫兹到几兆赫兹范围)。高速开关使得输入电压被切割成高频脉冲信号,然后通过变压器或电感进行能量传递和转换。 高效能量转换:由于开关元件(MOSFET)在完全导通或完全截止时工作,理想状态下几乎没有能量损耗。能量只是在电感和电容之间转移,因此能量损耗很小,转换效率可以高达80%-90%以上。 2.4开关电源 开关电源其实是一大类电源的统称,它们的相同之处就是都有 MOS 管构成的开关电路来产生 PWM 波,最后通过整流滤波来输出电压。不同之处就是每一种类型的电路有着完全不用的拓扑结构,有一些里面有电感,有一些里面是有变压器,不同的拓扑结构适用于不同的使用场景,有的适合 100W 以内的电源,有的适合做隔离,有的适用于可调输出的场景。上面介绍的现代开关电源的名称为反激电源,是因为该电源电路中的变压器两个绕组绕制方向是相反的,该电源有隔离的功能,但是支持的功率并不高,大量使用在 ADCD 的电源中,生活中所见的 100W 功率以内的电源大多是都是反激拓扑结构。图2.4 三、反激电源原理 正式进入到反激式开关电源的原理,这一节会制作 220V 转 5V/2A 输出的开关电源。 3.1拓扑结构 在图 2.3 中其他部分都介绍清楚了,除了在上面埋下了一个坑:副级绕组上是怎么感应出一个较小的电压的?其实反激电源最关键的部分就是这个变压器,在之前的刻板印象中: 一般只有交流的正弦波可以穿过这个变压器,并且输入输出电压比就是变压器的匝数比。而只有正电压的方波穿过变压器是整个架构中最精巧的部分。 3.1.1当 MOS 管从关闭到打开时 有变化的电流流入到主绕组,从而在铁芯中感应出一个 变化的磁场,变化的磁场会在副绕组中感应出电压,由于两个线圈缠绕方向相反,故上正下负的电压会在另一边感应出一个上负下正的电压。由于在副边添加了一个反向二极管,故此时的电压不能导通,故在副边其实没有电流。既然没有电流,可以当做副边的电路不存在,所以此时的变压器的初级线圈可以等效成一个普通的电感,电流流入电感就存储能量。 3.1.2当 MOS 管从打开到关闭时 当 MOS 管关闭,电感(初级线圈)上的电源突然被撤走,电感(初级线圈)会感应出来的上负下正的电压来阻止突变,也就是说在这个 MOS 管关闭瞬间,初级线圈两端的电压会瞬间从上正下负变为上负下正。这个电压会正好在次级线圈中感应出一个上正下负的电压,此时符合二极管的导通方向,副边的电路中就有了电流。该电流一部分给电容充电,维持输出电压的稳定,另一部分给后级的负载供电。同时这个过程又将初级线圈中存储的能量给释放出来,能量释放完之后再等待下一次 MOS 管打开给它充电,如此就完成了一个循环。 3.1.3总结 以上就是反激式开关电源的精髓所在,总结成一句话就是:MOS 管打开时给初级线圈储能, MOS 管关闭时,线圈将所储能量释放到次级线圈中。输出电压的计算公式: 3.2拓展电路 拓展的电路增加两部分电路,分别是 RCD 电路和反馈路径,如下图所示。 3.2.1 RCD 电路 由于各种原因,MOS 管产生的 PWM 波存在较大的尖峰,图下图中蓝色的波形图,尖峰的存在很可能导致 MOS 管的烧毁,RCD 电路就是用来吸收这个尖峰的,尖峰产生时,通过下图中红色的通路,迅速被电容吸收,并在剩余的时间里电容向电阻释放自身能量,经过这样的循环,尖峰就会被消减很多,确保 MOS 管的安全。 3.2.2反馈路径 反馈路径用来监测输出电压值: 输出电压 < 5V ,增加 PWM 的占空比; 输出电压 > 5V ,减小 PWM 的占空比; 按照常规的反馈电路设计思想,往往设计出的是两电阻分压反馈电路,如下图:但是由于变压器初级线圈侧都是强电,不可以直接与输出的 5V 弱电有电器连接,所以需要有隔离,故使用光电耦合电路来反馈电压信号。公众号@电路一点通整体电路,传递能量的为磁能,电压反馈回去的能量为光能,原边和副边是完全隔离的。 3.2.3其他 所谓的 AC-DC 广义上其实指的是只有整流桥和电容,这一部分是 220V 交流电转变为 310 伏的直流电,这部分才是真正意义上的 AC-DC。后面剩余部分其实是DC-DC,而反激拓扑结构其实仅仅指的是DC-DC 这部分电路。 3.3电路图 3.3.1全桥整流电路 图中为四个二极管组成的全桥整流电路,将交流电负半轴电路翻转至正半轴,实际制造选择了一个集成好的整流桥芯片,型号是 MB10F ,耐压 1000V ,体积小巧,并且芯片内部二极管一致性比较好。 MB10F 实物图 MB10F 原理图与 PCB 3.3.2输入电容 主要作用是滤波,将整流之后的“馒头波”变成比较平直的波形。电容越大,波形就越平稳,但是受到成本与体积因素也不能无限制的增加电容。公众号@电路一点通一般会按照输出功率配置电容,大致的标准为 2~3uF/W ,本次项目输出位 5V/2A ,也就是 10W ,故选择 33uF 的电解电容,并且电容的正极电压高达 330V ,故电容的耐压要求取 400V (保留裕量)。 3.3.3 RCD 电路 主要用于吸收 MOS管上的尖峰电压,防止 MOS 管被烧坏。既然是吸收尖峰电压的,它的耐压值也会比较高一些,老师选择的是 FR107 ,是一颗耐压 700V 的快恢复二极管,电阻、电容的取值先按照数据手册推荐的来(电阻:150K 1206 ;电容:2.2uF 1206),后期会根据电路实际测试的波形进行微调。 3.3.4变压器 变压器的作用是将高压变为低电压,同时起到一个强电弱电隔离的作用,变压器是整个反激开关电源的核心,但是不同于其他电子元器件可以直接购买现成的产品,变压器一般都需要定制,先给出最后设计出变压器的参数如下图。详情请见 3.5 变压器的机关方法。 3.3.5输出二极管 输出二极管的作用是在原边的 MOS 管打开时截止住感应出的反向电压,并且这个电压有可能会很大,所以这颗二极管的耐压要求会比较高,一般要几十伏。同时在原边 MOS 管关闭时,它又需要承受一个比较大的输出电流,所以这次我选择的是 SB10100,耐压 100V ,最大导通电流 10A 。这颗二极管两端的电压也会存在尖峰,所以也需要给它配置电容、电阻来吸收这个尖峰,取值也暂时按照数据手册推荐值(电阻 22R ;电容 1nF )。 3.3.6输出电容 输出电容主要影响输出纹波的大小, 选型时主要考虑两个参数:容值大小、ESR(电容寄生电阻),至于两个参数的取值可以根据公式大致推算,但是一开始比较简单的方法是一开始就选择两颗差不多大小的电容,先放上去看看,然后再根据纹波的大小来调节电容的大小。老师保守一点,第一版选择的是两颗 680uF/45mΩ 的电容,这样测量出的纹波大致 130mV 。如果想进一步减小纹波,可以考虑在这两颗电容之间加一颗电感,构成一个 CLC 网络,纹波就可以减小到 30mV ,如下图。 3.3.7电压反馈电路 电压反馈电路作用是向芯片反馈当前的电压值,从而让芯片微调 PWM 的占空比来稳定输出电压,主要过程如下:某时刻输出低于 5V → 下图中蓝色原点的电压降低 → TL431 试图稳定住该点的电压 → TL431 所在通路上电流会减小 → 光偶中的发光二极管变暗 → 将电压不足信号传递到了芯片内部 → 芯片收到信号后增加占空比来抬高电压。注意事项:(1)右侧两个电阻的取值会影响到输出电压,对应的关系如下。(2)光耦需要选择线性光耦,老师选择的型号是 PC817A 3.3.8主芯片 主芯片所涉及的电路如下图所示:本项目老师选择的芯片是 HE500-15,该芯片内部集成了 MOS 管,PWM波产生电路以及反馈和保护电路,是一颗非常典型的反激芯片。这部分电路其实反而是最简单的,直接照着数据手册抄就可以,简单介绍如下:(1)1 号引脚:接反馈(2)2 号引脚:芯片的电源输入。单独在变压器上绕了一个线圈,通过二极管以及电容的整流滤波变成低压直流电后给芯片供电。(4)4 号引脚:MOS 管的漏极,接到变压器的初级线圈。(5)5 号引脚:MOS 管的源级。接两个采样电阻,用来监测输入电流的大小。如果电流太大,就会触发内部的过流保护。(6)6 号引脚:接地。(7)7 号引脚:接过压保护的分压电阻,注意 7 号引脚接入的 VBUS 是在电路一开始,整流后引出的 VBUS 电压。(8)8 号引脚:内部比较电压,接 47nF 的电容即可。(以上序号存在一点问题,但是老师就这么讲了,我就顺着他这么写了。)以上电路是可以工作的,但是需要量产售卖的话,还需要假如一些保护器件和 EMI 器件,否则就只要读懂数据手册即可。 3.4 LAYOUT 要点 3.4.1走线顺畅 下图中蓝色标注出来的为主回流,电流大,故这两条路径走线要尽可能的短,不能绕弯。主回流的原理图 主回流的PCB图(白线) (我画过 PCB ,所以我可以理解老师大致的意思,没有画过的读者,建议自己实操一遍。) 3.4.2电路隔离 初级和次级电路必须要做好隔离,如下图,可以看到两边的地平面都是分开的。 3.4.3防干扰 芯片周边的元件要尽离芯片近,尤其是反馈部分(上面横向的矩形)的元件要远离干扰源。 3.5变压器的计算方式 思考:变压器输入电压和输出电压的比值就是主副线圈的杂数比。但是实际在制作一个变压器,这两个线圈到底应该绕多少圈呢?10 圈和1 圈,以及 100 圈和 10 圈,它们都是 10: 1 的匝数比,那么它们之间会有区别吗?我们又应该用多粗的线去绕制这个变压器呢?铁芯又应该如何选择呢?等等,计算出变压器的所有参数其实是制作手机充电器中最复杂的问题。说明1:因为我这个人比较较真,有点钻牛角尖了,所以我可能会在博客里字里行间的表达没有必要什么都钻牛角尖的想法,表达产品需要一次一次迭代、参数计算没不可能一次就完美实现的想法,如果正在看这篇博客的你没有这个问题的话,略过就好了。说明2:设计该电源需要你对反激电源的原理有足够充分的认识,但是一般的新人又不太了解反激电源的原理,所以就设计不出变压器,那设计不出变压器就做不出反激电源,不亲自做一遍反激电源,你就不可能对反激电源的原理有充分的认识。很多人都会在这个死循环中跳脱不出来了,破局的关键其实就是先别管理论,放下看不懂的知识,公众号@电路一点通用最简单的办法先把反激变压器给设计出来再说,然后再一步一步的迭代学习。 3.5.1确定匝数比 第一步需要根据下面的公式确定匝数比,其中需要讲解的如下: 是指变压器输出(主绕组端)电压的最小值,一般认为 220V 交流电压有效值最低为 185V ,经过整流滤波之后电压值乘以 。 :输出二极管的导通压降,一般为 0.7V 。 D:最大占比,一般取 0.4 。 综上,可以计算出大致的匝数比为 30。 看到这里不知道你会不会觉得这有点糊弄人,这些参数选取都非常随意,比如说二极管的导通压降,有的可能是 0.6V ,包括最大占空比,那为什么非要是 0.4 呢?0.35 行不行?而一旦修改了这些值,最后的匝数比计算结果也就不是 30 了。这其实也是反激变压器设计时最麻烦的一件事,永远不可能一下子就得到最优解,只要参数在一个差不多的范围之内,最后设计出来的电源其实都是可以工作的,所以一开始我们不需要纠结太多,包括公式是如何推导出来的,也不需要太在意,时刻记住我们今天的目标就是先把第一个变压器计算出来再说,后面再来迭代优化。 3.5.2原边电感 确定好匝数比之后,根据以下公式确定原边线圈的电感值,其中需要解释的部分如下:(因为在 MOS 管打开时,副边就相当于不存在,原边就等效成一个电感,该电感值的大小就直接影响到纹波电流的大小。) :效率先取估算值为 75%。 :是指原边电感接受到的频率,也就是芯片的频率 为 65KHZ。 :输出功率,5V/2A 故输出功率为 10W 。 通过以上计算可得,原边电感值约为 6.2mH 。 3.5.3选定磁芯 磁芯的大小一般和输出功率有关,如下图,因为磁芯越大就可以选用更粗的线,绕更多的线圈,具体选多大的磁芯更多的是经验值。本次输出功率为 10W ,又是第一次设计变压器,稳妥一些选大一号的 EE22,确定磁芯后就确定了磁芯额截面积,如下图。 3.5.4线圈匝数 原边线圈需要根据以下公式计算,需要说明的是: :原边峰值电流,计算公式在下图中小字附上,不展开讲解。 :最大磁通密度,一般取值为 0.25T 。 :最大磁芯面积,上一节中确定的参数。 最后计算出的原边匝数大约为 157 匝,根据一开始算出来的匝比是30,可以算出副边为 15.2 匝,向上取整为 16 匝,再根据匝比反推出原边匝数是 180 匝。本次用的芯片还需要辅助绕组供电,芯片要求的输入电压是 15V 左右, 是 5V 的 3 倍,所以辅助绕组的杂数为 18 圈。 3.5.5绕线的直径 一般来说流过 5A 的电流就需要至少 粗的线,故首先计算出线圈中电流的有效值如下图红色框(省略了计算过程),其中需要解释的部分如下: 计算出的原边线径为 0.15mm,稳妥一些用 0.2mm 直径的。 计算出的副边线径为 0.89mm,稳妥一些采用 0.1mm 直径的,考虑到趋肤效应,故改用 4 根 0.5mm 直径的铜丝,并联起来用会更好一点。 辅助绕组电流比较小,直接用 0.1mm 的就可以 3.5.6交付产家 交付厂家生产之前,还需要提供以下信息: 骨架样式 引脚个数 线圈绕制方向 小 tips: 在前面提到过,反激电源的两个线圈是以相反方向缠绕,需要标注清楚同名端 因为初级线圈比较多,可以采用三明治绕法:先绕一半的初级线圈,然后 依次 绕 次级线圈和辅助线圈,最后再绕初级线圈的剩下的一半,这样耦合的效果会更好。 反激变压器的计算方法有很多,以上介绍的其中最简单的一种,而且计算出的结果也不一定是最优解,甚至两个章节给出的参数都不太一样。实际上这两组参数都可以正常工作,但是都需要做成成品电源后测试,优化迭代。本项目的首要目的是设计出第一个能用的反激变压器,制作出来 后带着板子去学习更多相关的电源知识,充分理解公式的意义,思考如何改进变压器,就会事半功倍,远胜于拿着书本知识从入门到放弃。
有电友问,怎么样把IGBT当作继电器使用?就是,不用驱动电路,就用一个24V通断来控制IGBT的通断?听完电友的提问,我只想说,这电友的想法太牛了,这操作也太土豪了吧,继电器才几个钱?只想说你们单位真是财大气粗啊!IGBT适用频繁动作。言归正传,你们知道这想法能不能实现呢?欢迎在评论区留言评论吧! 电友A说:第一,IGBT和IGBT模块都是一个东西,只不过模块可以是1个IGBT或多个集成的IGBT而已。 第二,把它当电子开关可以呀,但一定要是开关才好,不要变成放大器。否则需要PWM基波频率的支持。为什么要这么做呢?电子开关的形式很多种,为什么非要使用IGBT呢? 电友B说: 为什么要用igbt当继电器,应用什么场合,半导体器件开关动态特性好,但是静态的不如,不能完全断开有漏电流,导通有饱和压降等等。 电友C说: 土豪,我们可以交个朋友不?我太羡慕你们了!
一.简介 之前介绍过H桥电机驱动电路的基本原理,但是以集成的电机驱动芯片为示例。这些集成的芯片使用起来比较简单,但是只能适用于一些小电流电机,对于大电流的电机(比如:RS380和RS540电机),则不能使用这些集成的芯片(否则会导致芯片严重发热并烧毁)。此时便需要自行用半桥/全桥驱动芯片和MOS管搭建合适的H桥电机驱动电路实现对大电流电机的驱动控制。 二.示例原理图和PCB展示 此原理图和PCB采用的是网上分享的电路设计(IR2104半桥驱动+LR7843MOS管),为了便于焊接,对其中的一些封装进行了修改,并重新布线。 该电机驱动板有两个H桥电路,可以同时控制双路电机。可通过相应的控制信号来控制电机的转速和正反转。 1.原理图 2.PCB 3D图 三.辅助电路部分讲解 本驱动模块默认采用7.4V的锂电池组接入右侧的P1端子进行供电。 1.BOOST升压电路 ★BOOST升压电路采用的是MC34063这款芯片。此模块主要是将7.4V的输入电压升到12V后为后面的IR2104S半桥驱动芯片供电(需要12V的原因将在下面介绍)。此芯片的工作原理在此不多做介绍,可自行下载数据手册进行学习(后期会对此专门写一篇博客介绍)。注意事项: (1).此BOOST电路模块是此驱动板中较为容易出问题的部分,因此焊接时需要先对其进行焊接调试,确认没有问题后再进行后续的焊接。 (2).此电路需要尤其注意0.22Ω的精密电流检测电阻,如果电阻质量不合格很容易出现问题,导致电路不能正常工作。 2.降压稳压电路 ★降压稳压电路采用的是MIC5219这款LDO芯片。此电路模块将7.4V的输入电压降压稳压到3.3V给后面的74LVC245芯片供电。类似芯片较多,使用也较为简单。 3.隔离电路部分 在设计电机驱动板时,很多都会有一个用于隔离的电路模块。主要用于将控制器与H桥驱动电路隔离开,防止损坏控制器。 此电机驱动板采用了74lvc245这款三态输出的收发器芯片作为隔离芯片。也可以使用74HC125(三态四线非反相缓冲器)或74HC244(三态八线非反相缓冲器)。具体使用说明可参考相应的数据手册。 四.搭建的H桥驱动电路详解 1.简介在学习此部分之前,需要先掌握基础H桥驱动的工作原理, 自行搭建的H桥驱动电路一般都包括两个部分:半桥/全桥驱动芯片和MOS管。自行搭建的H桥驱动所能通过的电流几乎由MOS管的导通漏极电流所决定。因此,选择适当的MOS管,即可设计出驱动大电流电机的H桥驱动电路。 2.NMOS管IRLR7843 在选择MOS管搭建H桥时,主要需注意以下一些参数: ★1.漏极电流(Id):该电流即限制了所能接入电机的最大电流(一般要选择大于电机堵转时的电流,否则可能在电机堵转时烧毁MOS管),LR7843的最大漏极电流为160A左右,完全可以满足绝大部分电机的需要。★2.栅源阈值电压/开启电压(Vth):该电压即MOS管打开所需的最小电压,也将决定后续半桥驱动芯片的选择和设计(即芯片栅极控制脚的输出电压)。LR7843的最大栅源阈值电压为2.3V。★3.漏源导通电阻(Rds):该电阻是MOS管导通时,漏极和源极之间的损耗内阻,将会决定电机转动时,MOS管上的发热量,因此一般越小越好。LR7843的漏源导通电阻为3.3mΩ。★4.最大漏源电压(Vds):该电压是MOS管漏源之间所能承受的最大电压,必须大于加在H桥上的电机驱动电压。LR7843的最大漏源电压为30V。满足7.4V的设计需要。 3.半桥驱动芯片IR2104S 在H桥驱动电路中,一共需要4个MOS管。而这四个MOS管的导通与截止则需要专门的芯片来进行控制,即要介绍的半桥/全桥驱动芯片。 ★所谓半桥驱动芯片,便是一块驱动芯片只能用于控制H桥一侧的2个MOS管(1个高端MOS和1个低端MOS,在前述推荐的博客中有介绍)。因此采用半桥驱动芯片时,需要两块该芯片才能控制一个完整的H桥。 ★相应的,全桥驱动芯片便是可以直接控制4个MOS管的导通与截止,一块该芯片便能完成一个完整H桥的控制。这里使用的IR2104便是一款半桥驱动芯片,因此在原理图中可以看到每个H桥需要使用两块此芯片。 1.典型电路设计(来源于数据手册) 2.引脚功能(来源于数据手册) ★VCC为芯片的电源输入,手册中给出的工作电压为10~20V。(这便是需要boost升压到12V的原因) ★IN和SD作为输入控制,可共同控制电机的转动状态(转向、转速和是否转动)。 ★VB和VS主要用于形成自举电路。(后续将详细讲解) ★HO和LO接到MOS管栅极,分别用于控制高端和低端MOS的导通与截止。 ★COM脚直接接地即可。 3.自举电路 此部分是理解该芯片的难点,需要进行重点讲解。从上面的典型电路图和最初的设计原理图中均可发现:该芯片在Vcc和VB脚之间接了一个二极管,在VB和VS之间接了一个电容。这便构成了一个自举电路。 作用:在高端和低端MOS管中提到过,由于负载(电机)相对于高端和低端的位置不同,而MOS的开启条件为Vgs>Vth,这便会导致想要高端MOS导通,则其栅极对地所需的电压较大。 补充说明:因为低端MOS源极接地,想要导通只需要令其栅极电压大于开启电压Vth。而高端MOS源极接到负载,如果高端MOS导通,那么其源极电压将上升到H桥驱动电压,此时如果栅极对地电压不变,那么Vgs可能小于Vth,又关断。因此想要使高端MOS导通,必须想办法使其Vgs始终大于或一段时间内大于Vth(即栅极电压保持大于电源电压+Vth)。首先看下IR2104S的内部原理框图(来源于数据手册)。此类芯片的内部原理基本类似,右侧两个栅极控制脚(HO和LO)均是通过一对PMOS和NMOS进行互补控制。 自举电路工作流程图: 以下电路图均只画出半桥,另外一半工作原理相同因此省略。 假定Vcc=12V,VM=7.4V,MOS管的开启电压Vth=6V(不用LR7843的2.3V,原因后续说明)。(1).第一阶段:首先给IN和SD对应的控制信号,使HO和LO通过左侧的内部控制电路(使上下两对互补的PMOS和NMOS对应导通),分别输出低电平和高电平。此时,外部H桥的高端MOS截止,低端MOS导通,电机电流顺着②线流通。同时VCC通过自举二极管(①线)对自举电容充电,使电容两端的压差为Vcc=12V。 (2).第二阶段:此阶段由芯片内部自动产生,即死区控制阶段(在H桥中介绍过,不能使上下两个MOS同时导通,否则VM直接通到GND,短路烧毁)。HO和LO输出均为低电平,高低端MOS截止,之前加在低端MOS栅极上的电压通过①线放电。 (3).第三阶段:通过IN和SD使左侧的内部MOS管如图所示导通。由于电容上的电压不能突变,此时自举电容上的电压(12V)便可以加到高端MOS的栅极和源极上,使得高端MOS也可以在一定时间内保持导通。此时高端MOS的源极对地电压≈VM=7.4V,栅极对地电压≈VM+Vcc=19.4V,电容两端电压=12V,因此高端MOS可以正常导通。 (此时,自举二极管两端的压差=VM,因此在选择二极管时,需要保证二极管的反向耐压值大于VM。) 注意:因为此时电容在持续放电,压差会逐渐减小。最后,电容正极对地电压(即高端MOS栅极对地电压)会降到Vcc,那么高端MOS的栅源电压便≈Vcc-VM=12V-7.6V=4.4V < Vth=6V,高端MOS仍然会关断。 补充总结: ★因此想要使高端MOS连续导通,必须令自举电容不断充放电,即循环工作在上述的三个阶段(高低端MOS处于轮流导通的状态,控制信号输入PWM即可),才能保证高端MOS导通。自举二极管主要是用来当电容放电时,防止回流到VCC,损坏电路。 ★但是,在对上面的驱动板进行实际测试时会发现,不需要令其高低端MOS轮流导通也可以正常工作,这是因为即使自举电容放电结束,即高端MOS的栅源电压下降到4.4V仍然大于LR7843的Vth=2.3V。 那么在上述驱动板中,自举电路就没有作用了吗?当然不是,由于MOS管的特性,自举电路在增加栅源电压的同时,还可令MOS管的导通电阻减小,从而减少发热损耗,因此仍然建议采用轮流导通的方式,用自举电容产生的大压差使MOS管导通工作。 4.控制逻辑 时序控制图: 简单看来,就是SD控制输出的开关(高电平有效),IN控制栅极输出脚的高低电平(即H桥MOS管的开关)。 在最上面的驱动板中,SD接到VCC,即处于输出常开状态。只需要对IN脚输入对应控制信号即可进行电机的驱动。上面为半桥的驱动方式,驱动一个H桥要同时对两个IR2104进行控制。 以上面设计的电机驱动板为例,驱动真值表: 改变PWM的占空比,即可改变电机的转速。 五.相关补充 ★1.自举二极管一般选用肖特基二极管(比如上述驱动板中的1N5819)。 在自举电容选择时,其耐压值需大于Vcc并留有一定余量(如上述驱动板中为16V的钽电容)。而自举电容的容值选择需要一定的计算。具体可自行查找,此驱动板中选用1uF的钽电容,经测试运行稳定。一般来说,PWM的输入频率越大(即电容充放电频率),电容所需容值越小。★2.H桥MOS管栅极串联的电阻主要用于限流和抑制振荡。为了加快MOS管的关断还可以在栅源之间并联一个10K电阻或在栅极串联电阻上反向并联一个二极管。这部分内容网上可找到较多介绍。