pwm在现代电子器件中使用较多,pwm作为控制技术之一,实现了自身价值。为增进大家对pwm的了解,本文将对pwm、pwm原理、pwm优点等内容予以介绍。如果你对pwm具有兴趣,不妨继续往下阅读哦。 一、PWM简介...
设计中采用了专门的芯片组成了PWM信号的发生系统并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节从而控制其输入信号波形等均作了详细的阐述。另外本系统中使用了红外对管对直流电机的转...
AC220V电路2KV防雷滤波设计 图1 AC220V电路2KV防雷滤波设计 图2 接口电路设计概述: 交流电源接口通过电源线与电网连接为电气设备提供电能,产品在工作中产生各种干扰,如电源变换电路、高频变压器、数字电路等产生的干扰,这些干扰通过电源接口形成对电网的传导干扰以及对空间的辐射干扰; 当电网上有大功率感性负载通断或电网遭受雷击时,会在电源接口产生瞬态的脉冲干扰和浪涌干扰,若电源接口不进行防护滤波设计,这些干扰容易影响产品的正常工作,雷电干扰甚至能损坏设备,因此交流电源接口需要进行电磁兼容设计,确保设备工作稳定; 本方案从EMC原理上,进行了相关的抑制干扰和抗敏感度的设计;同时兼容接口防雷设计;本方案防雷电路设计可通过IEC61000-4-5标准,共模2000V,差摸1000V的接口防雷测试。 电路EMC设计说明: 1.电路滤波设计要点: L1、C1、C3、C4组成第一级滤波电路。C1为差模滤波电容,主要滤除差模干扰;C3、C4为共模滤波电容,为共模干扰提供低阻抗回路;L1为共模滤波电感,对共模干扰进行抑制。 L2、C2、C5、C6组成第二级滤波电路,C2为差模滤波电容,主要滤除差模干扰,C5、C6为共模滤波电容,为共模干扰提供低阻抗回路,L2为共模滤波电感,对共模干扰进行抑制; 若产品功率大,干扰强,单级滤波插入损耗有限,则设计前期需要考虑多级滤波; C19为整流桥的高频滤波电容,一般采用小电容,主要为整理桥的高频谐波电流提供回流路径; C20为变压器的高频滤波电容,一般采用小电容,主要为变压器的高频谐波电流提供回流路径; C15和R13组成续流管上的削尖峰电路,C15电容典型取值为1000pF,R13电阻典型取值为10Ω; C12和R12组成PWM控制线上的滤波电路,C12电容典型取值为47pF,R12电阻典型取值为10Ω,其值可根据后续测试情况进行调整; L4和C8组成输出端滤波电路,主要为输出端口进行共模和差模滤波; 各种功能地通过电容连接,电容典型取值为1000pF,其值可根据后续测试情况进行调整; 2. 电路防护设计要点 RV1、RV2、RV3、GDT1组成第一级防护电路,其中RV1进行差模防护、RV2、RV3、GDT1进行共模防护。 RV2、RV3、GDT1防护器件会导致绝缘耐压试验不能通过,当接口需要考虑绝缘耐压试验时建议去掉RV2、RV3、GDT1三个元器件。 3.特殊要求 电路中所有的电容应符合安规的要求,差模电容选取额定电压250V以上X电容,共模电容选取额定电压250V的Y电容; 因为压敏电阻失效模式为短路,可能会造成大电流,所以需要增加保险丝F1,并且保险丝F1位置要靠近接口放置。 4.器件选型要点 交流电源接口电路中的Y电容(C3、C4和C5、C6)容值选取范围为100pF~4700pF,典型值选取2200pF; 交流电源接口电路中的X电容(C1和C2)容值选举范围为0.1μF~2.0μF第一级中的X电容C1典型值选取0.33μF,第二级滤波中的X电容C2典型值选取1.0μF; L1、L2、L4为共模电感,共模电感感值范围为100μH~30mH,典型值选取15mH; 输出端的滤波电容C8取值范围为100PF~0.1uF,典型取值为10nF; RV1、RV2、RV3压敏电阻选择压敏电压范围466V~616V,典型值选取550V,压敏电阻RV1的通流量(10次冲击)选择大于等于167A,压敏电阻RV2、RV3的通流量(10次冲击)选择大于等于167A; GDT1气体放电管选择直流击穿电压为466V~616V,典型值选取550V,通流量选择大于等于167A。
反馈的过程 当副边的输出电压升高时,TL431参考端电压(R端)电压也会升高,使得TL431的导通量增加,同时光耦内部的发光二极管流过的电流也会增大,进而使得光耦三极管导通量增加,相连的电源IC电压反馈引脚VFB电压降低,则PWM控制器控制开关MOS引脚的输出占空比降低,输出电压就会降低。当副边输出电压降低的时候,调节过程会相反。 反馈参数静态工作点的计算 R6的计算 假设输出电压VOUT是12V。TL431内部是由各种晶体管构成的,如图所示 参考电压端连接运放的同相输入端,要想其稳定工作,参考输入端的电流一般是2uA左右,VREF=2.5V,为了避免此端口电流影响分压比以及电阻热噪声的影响,一般取流过电阻R6的电流为参考端电流的100倍数以上。 考虑到功耗的要求,R6希望大一些,综合考虑,R6为10k R5的计算 输出电压为VOUT=12V,TL431的VREF=2.5V,通过R5和R6的电流近似相等,则有: 计算R3 TL431内部需要供电才能正常工作,R3是为TL431供电的电阻。正常时候光耦那一路在给TL431进行供电,但光耦电流也有很小的时候,在光耦电流接近零的时候,R3要能为431进行供电。 光耦的压降一般为1.2V左右,当光耦的电流接近零的时候,R1上面基本上无压降,此时R3上面的压降是1.2V. 下图数据手册中可以得知IKA=1~100mA; 同时考虑到功耗,取R3为1K. 计算R1 R1的取值要保证芯片控制端取得所需要的电流(假设最小电流为1mA,并且PC817的CTR=0.8-1.6,取最低0.8,CTR光耦的传输比),要求流过光二极管的最小电流: TL431的阳极与阴极之间的电压差为2.5V,光耦原边二极管的压降为1.2V. 光耦原边二极管最大导通电流在50mA左右,TL431的为100mA左右,选择流过R1的最大电流为50mA 总结来说: TL431工作在线性区状态; 参考端电压由R5和R6的电阻分压确定,与内部2.5V的基准电压源进行比较;正常情况下,参考端R端的电压在2.5V上下波动; 参考端R端的电压越高,则TL431 VKA的阻抗越小,即KA两端电压越低;KA两端电压,不会低于基准电压2.5V,参考端R端的电压越低,则会相反。 动态反馈补偿计算 R5,C4形成一个在原点的极点,用于提升低频增益,来限制低频(100HZ)纹波和提高输出调整率。R4,C4形成一个零点,来提升相位,放在带宽频率的前面增加相位裕度,具体位置要看其余功率部分在设计带宽处的相位是多少。R4,C4的频率越低,其提升的相位越高,最大只有90度,但在其频率很低时候低频增益也会减低,一般放在带宽的1/5出,可以提升约78度相位。