拆解元器件!看陶瓷滤波的基本结构
2021-04-21

下图是陶瓷滤波的基本结构和原理,由锆钛酸铅等粉末高温烧结压铸的陶瓷片经高压直流极化后形成具有压电效应的压电材料,具有压电效应和谐振选频功能。



和普通晶振晶体特性类似,因此通过组合可制成各类陶瓷谐振器或者滤波器等器件,下图是其等效电路,和晶振差不多。



下图是一颗455khz中频陶瓷带通滤波器



塑封



塑料外壳树脂灌封,三引脚。



显微摄影



底部



剥离部分外壳后露出电极片



一共四颗陶瓷片,两个稍厚,两个薄一些。



抽出一片,中间有个金属垫片负责固定和保证接触良好。



另一面有个弹性垫片压紧



第一颗陶瓷片,表面镀银。



另一面中心部位镀银(这个面积根据设计需要,可以微调谐振频率),



侧面



第二片陶瓷,薄一些。



双面镀银,且面积一样。



全部取出后,两个厚的完全一样,两个薄的也是一样。



电极分布,底部有个绝缘垫片,负责隔离u形电极片。



通过陶瓷片的组合获得设计功能



全部部件



下面也是一颗中频陶瓷带通滤波器,通带频率较高。



反面



侧面用胶将两层粘合起来



加热后分离顶盖(这几张对焦不太好),两个梳状陶瓷片。



拿下一片



反面



全部取下



陶瓷衬底上有胶质绝缘层,刮开可以看到镀银电极引线。



其实每一片陶瓷片有多个电极度层,实现多个陶瓷谐振器的整合,减小体积。



反面



这个就更小了,也是陶瓷带通滤波器。



多层压接在一起



反面



除去底部外壳



去除上盖,中间还有三层,中间是隔离层,只有中间两层是陶瓷片。



去除顶盖后



准备分离中间三层



刀片撬入



由于分离需要经过高温加热变得很脆,有些碎裂。

电极分布走线形状更加复杂



中间的隔离层



这个是巴伦滤波器,有滤波功能同时还具有单端转差分和阻抗变换的作用,多用于tx输出到rf功放之间的滤波和差分变换工作。



体积比较小和一粒米相当,现在的此类滤波器会更加的小,和芝麻类似。



陶瓷粉末烧结封装了,很难拆解了。



粘到手指上磨一下,除了一些电极没看到什么。



烧红冷却暴力分离,也只看到一些铜色电极,内部结构已经融为一体了,陶瓷材料也和上面不同,通体纯白,无法继续分解了。



下面是一颗高频rf带通滤波器,工作频段ghz以上。



侧面,同样陶瓷烧结封装。



底部



无奈同样暴力分解



和上面如出一辙,也只能看到一些多层引线电极,但是不是镀银了,是紫铜。

看来以后想获得真相也越来越难了



最后赠送一个13mhz有源晶振,金属外壳已经去除。



反面



陶瓷基材,类似厚膜工艺。

一颗奇特的可调电容,用来微调震荡频率。



拆下来看看



估计很多坛友也没见过这样的微调电容,我也是第一次见,一颗异形mlcc电容上镶嵌了一个可调部件。



底部



刀片分离



分离后



作用原理



旋帽反面特写



垫圈



旋帽正面特写



整体的反面,一颗6脚震荡ic,和外围组成振荡电路。



这个是晶振了,6脚的,其实4个腿儿都是地。



磨去金属顶壳



分离



看到晶体了



双面镀金,和电极靠银浆连接。



侧面特写



全部残骸



作者:qrut

本文来源:数码之家 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 元器件
  • 电阻
  • 电容
  • 电感
  • 齐纳二极管是如何工作的?

    为了了解齐纳二极管,我们首先看一个常规二极管。当二极管阻止反向电流时,二极管两端会产生较大的压降;当二极管允许电流正向方向流动时,二极管两端的压降很小。 现在我们用齐纳二极管替换二极管。 齐纳二极管允许电流正向流动,在这种情况下,齐纳二极管的

    05-10
  • 二极管关键参数搞懂了解,选型不难

    二极管选型相对简单,相信每个硬件工程师,都有对比过肖特基二极管与PN结二极管的差异。 差异无非有以下结果: 表中参数,看看就好,并不严格,知道二者之间的相对大小就行了 。 了解了上面参数,基本就知道什么电路,该选什么类型的二极管了。   能用PN结二

    05-10
  • ON状态的MOSFET和三极管

    MOSFET和三极管,在ON状态时,MOSFET通常用Rds,三极管通常用饱和Vce。 是否存在能够反过来的情况,三极管用饱和Rce,而MOSFET用饱和Vds呢? 三极管ON状态时工作于饱和区,导通电流Ice主要由Ib与Vce决定,由于三极管的基极驱动电流Ib一般不能保持恒定,因而Ic

    05-10
  • 常用充电IC参数特性一览

    1.TP4056——UMW(友台半导体) TP4056是一款性能优异的单节锂离子电池恒流/恒压线性充电器。TP4056采用ESOP8封装配合较少的外围原件使其非常适用于便携式产品,并且适合给USB电源以及适配器电源供电。  基于特殊的内部MOSFET架构以及防倒充电路,TP4056不需 要

    05-08
  • 掌握常用的4种电容

    电容的种类繁多,眼花缭乱,在使用上定性,我们就能化繁从简,给设计及应用带来便利。 我们绝大多数电路板都能至少找到这4种电容的一种:铝电解电容,陶瓷电容,钽电容,CBB电容。 ❤铝电解电容:有极性,对电源进行滤波储能,常用容值范围:10--470μF;耐压

    05-08
  • 磁珠的原理及选型

    注 | 文末留言有福利哦 0 1 磁珠原理 磁珠的主要原料为铁氧体,铁氧体是一种立方晶格结构的亚铁磁性材料。 铁氧体材料为铁镁合金或铁镍合金,它的制造工艺和机械性能与陶瓷相似,颜色为灰黑色。 电磁干扰滤波器中经常使用的一类磁芯就是铁氧体材料,许多厂商

    05-08
  • 二极管产生反向恢复过程的原因

    一、二极管从正向导通到截止有一个反向恢复过程 在上图所示的硅二极管电路中加入一个如下图所示的输入电压。在0―t1时间内,输入为+VF,二极管导通,电路中有电流流通。 设VD为二极管正向压降(硅管为0.7V左右),当VF远大于VD时,VD可略去不计,则 在t1时,V

    05-06
  • 电容与阻抗

    一直有个疑惑:电容感抗是1/jwC,大电容C大,高频时w也大,阻抗应该很小,不是更适合滤除高频信号?然而事实却是:大电容滤除低频信号。 今天找到解答如下:一般的10PF左右的电容用来滤除高频的干扰信号,0.1UF左右的用来滤除低频的纹波干扰,还可以起到稳压

    04-30
  • 上拉电阻、下拉电阻的选择与计算

    首先,想说上拉电阻几乎都是应运三极管电路而生的,但是本文基本上都属于定性的分析,避免对其定量分析,相信即使没有学过三极管晶体电路的同学还是可以基本理解的。 首先还要明确一个术语,所谓开漏(OD),开集(OC)电路就 是场效应管的漏极和三极管的集电

    04-28
  • 学习二极管必须搞清楚的三个方面

    一、二极管的电容效应 二极管具有电容效应。它的电容包括势垒电容CB和扩散电容CD。 1、势垒电容CB(Cr) 前面已经讲过,PN结内缺少导电的载流子,其电导率很低,相当于介质;而PN结两侧的P区、N区的电导率高,相当于金属导体。从这一结构来看,PN结等效于一个

    04-27
  • MOS管的简单应用

    导体三极管中参与导电的有两种极性的载流子,所以也称为双极型三极管。本文介绍另一种三极管,这种三极管只有一种载流子参与导电,所以也称为单极型三极管,因为这种管子是利用电场效应控制电流的,所以也叫场效应三极管(FET),简称场效应管。MOS在电路中应用

    04-26
  • 硬件设计之电阻原理与选型

    注 | 文末留言有福利 0 1 电阻的基本原理 电阻,和电感、电容一起,是电子学三大基本无源器件,从能量的角度,电阻是一个耗能元件,将电能转化为热能。 通常,都是根据欧姆定律来定义电阻,给电阻加一个恒定电压,会产生多大电流;也可以,通过焦耳定律来定义

    04-21
下载排行榜
更多
广告
X
广告