

SAR基础
合成孔径雷达天线往往仅用单个辐射单元,沿一直线依次在若干个位置平移,且在每一个位置发射一个脉冲信号,接收相应发射位置的雷达回波信号并储存起来,然后通过信号处理的方法产生一个等效的长的线性阵列天线。合成孔径雷达的特点是分辨率高,能全天候工作,可有效地识别伪装和穿透掩盖物。
相参性
要想通过在不同的位置发射信号并收集后再联合处理,那么首先就要确保发射的脉冲是相参的,相参性是SAR系统获得高分辨率的必要条件。
发射信号、本振电压、相参震荡电压和定时器的触发脉冲均由同一基准信号提供,接收机也需要具备很高的时间精度。
多普勒历程
随着平台的运动,地面目标逐渐进入雷达波束,平台接近目标时多普勒频率为正,远离目标时为负,频率随时间变化曲线的斜率为负,目标的多普勒历程如下图所示。


SAR的距离和方位分辨率
SAR通过脉冲压缩技术改善距离分辨率,它与发射信号的带宽有关,带宽越大,分辨率越小;通过合成孔径技术改善方位分辨力,条带SAR理论上可以达到天线尺寸的1/2,聚束SAR分辨率更小。
高的分辨力要求采用小的天线而不是大的天线,并且与距离和波长无关。当然,受到其他因素的影响,天线孔径也不可能无限小。


SAR的信号模型和处理过程
SAR是需要存储雷达回波,由于数据不是同时采集的,需要对一定的时间间隔内接收的信号进行运算。A/D转换之后对数字信号进行存储,选择存储介质必须考虑到信息记录的速率、记录的数据容量、完成方位压缩和脉冲压缩时存储数据的读取速度。 SAR天线在每个位置发射脉冲信号并接收目标回波并按顺序存储,然后通过二维匹配滤波实现目标的距离和方位向的高分辨。


运动补偿
SAR信号处理是假定雷达随飞机做直线等速飞行。实际上,运载天线的飞行器总是与这种典型的直线等速飞行状态有偏差的。因此就需要用辅助设备来补偿非直线运动。
运动补偿设备必须包含能检测飞行路线与直线路径偏离的传感器,可以用各种方式使用此敏感元件的输出。为了完善运动补偿,还必须调整接收信号的相位,以补偿实际天线与理想的形成合成天线位置之间的偏移。


SAR分类
按照发射机和接收机的安装位置可以分为单基SAR和双基SAR。其中单基SAR表示发射机和接收机安装于同一平台;双基SAR表示发射机和接收机安装于不同平台,为收发双置。
按照SAR成像模式可以分为:条带SAR,扫描SAR和聚束SAR等。
1.条带SAR: 最常见的SAR模式,在该模式下,天线波束指向保持不变,随着平台的运动,天线波束均匀扫过目标区域,形成一个扫描带。
2.扫描SAR: 在平台运动的过程中,天线波束沿距离方向周期性扫描,形成多个扫描条带,扩大了扫描区域。但由于每个条带波束停留的时间有限,因此,方位向分辨率有所下降。
3.聚束SAR: 在平台运动过程中,天线波束始终指向某一固定区域,因此该区域能够得到长时间的照射从而获得更高的方位向分辨率。但缺点是只能对某一个区域进行成像,对于整个区域来说,图像是不连续的。
根据不同的用途,SAR还包括:
1.高分辨率SAR: 使用宽带或超宽带信号,以实现亚米级或厘米级的高分辨率。
2.干涉SAR: 由两个不同位置的接收机对同一区域进行观测,或是同一接收机在不同位置对同一区域进行两次观测所获得的复图像进行处理,获取区域的高程信息,进行3D成像。
3.多极化SAR: 使用不同的极化方式(HH、VV、HV、VH)对区域进行成像,区分出具有不同散射特性的物体,对地面进行精细分类。
4.动目标SAR: 将SAR技术与动目标指示(MTI)结合,在军事上可用于探测地面运动目标,为执行作战任务提供目标位置信息。