NB-IoT和eMTC的关键技术对比
采集列表 2023-09-19


NB-IoT和eMTC同属于蜂窝物联网,也同时具备了蜂窝物联网的“3C”特征:



•Coverage 增强覆盖

•Consumption 低功耗

•Cost 低成本


为了满足“3C”目标,NB-IoT和eMTC的实现方式也有不同之处,具体如下:

NB-IoT和eMTC的关键技术对比

增强覆盖




NB-IoT的覆盖目标是MCL 164dB,其覆盖增强主要通过提升上行功率谱密度和重复发送来实现。


eMTC的覆盖目标是MCL 155.7dB,其功率谱密度与LTE相同,覆盖增强主要是通过重复发送和跳频来实现。


MCL,(Maximum Coupling Loss,最大耦合损耗),指从基站天线端口到终端天线端口的路径损耗。从覆盖目标看,eMTC比NB-IoT低8dB左右。


重复发送如何增强覆盖?




重复发送就是在多个子帧传送一个传输块。Repetition Gain=10log  Repetition Times,也就是说重传2次,就可以提升3dB啊。NB-IoT最大可支持下行2048次重传,上行128次重传。


NB-IoT和eMTC均采用了重复发送的方式来增强覆盖。


提升上行功率谱密度如何增强覆盖?



上下行控制信息与业务信息在更窄的LTE带宽中发送,相同发射功率下的PSD(Power Spectrum Density)增益更大,降低接收方的解调要求。


在下行方向,若NB-IoT采用独立部署模式,下行发射功率可独立配置,其功率谱密度与GSM相同,但比LTE FDD功率谱密度高14dB左右。


在上行方向,由于NB-IoT最小调度带宽为3.75K或15K,上行功率谱密度最大增强17dB,考虑GSM终端发射功率最大可以到33dBm,NB-IoT发射功率最大23dBm,所以实际NB-IoT终端比GSM终端功率谱密度最高可达7dB左右。


eMTC与LTE共享发射功率和系统带宽,在功率谱密度上无增强,主要通过重复发送和跳频实现覆盖增强。


对于NB-IoT,值得一提的是:


在下行方向,只有独立部署的功率可独立配置,带内和保护带部署模式的功率均受限于LTE的功率,因此,在带内和保护带部署模式下,NB-IoT需要更多重传次数才能达到与独立部署模式下相当的覆盖水平。


在上行方向,三种模式基本没区别。

低功耗


在低功耗上,NB-IoT和eMTC采用相同的技术,包括:PSM、eDRX和延长周期定时器。






①PSM(power saving mode,省电模式)


手机需要时刻待命,不然有人打电话给你找不到怎么办?但这意味着手机需不时监听网络,这是要耗电的。




但物联网终端不同于手机,绝大部分时间处于深度睡眠状态,每天甚至每周就上报一两条消息后,在idle态停留一段时间后便进入深度睡眠状态,不用监听空口消息。


PSM就是让物联网终端发完数据就进入深度睡眠状态,类似于关机,不进行任何通信活动。


②eDRX


DRX(Discontinuous Reception),即不连续接收。eDRX就是扩展的不连续接收。



手机可以断断续续的接收信号以达到省电的目的。NB-IoT和eMTC扩展了这个断续间隔,更加省电。


③延长周期定时器


灵活配置长周期位置更新定时器RAU/TAU,减少唤醒次数。


低成本


如何降低成本,包括减少协议栈处理开销、单天线和FDD半双工模式以降低RF成本、低速率和低带宽本身意味着降低芯片处理的复杂度等等。




比如FDD半双工模式,意味着不必同时处理发送和接收,比起全双工成本更低廉,更省电。




NB-IoT和eMTC的技术参数对比


NB-IoT和eMTC主要差异在于:






NB-IoT追求的是最低的成本,最长的续航时间,没有移动性、数据速率非常低,它比较适合于无移动性,小数据量,对时延不敏感,对成本很敏感,终端数量级大的应用,比如智能停车,智能灯杆,智能抄表等。


为了满足更多的应用场景和市场需求,Re-14和后续版本将对NB-IoT进行了一系列增强技术,包括增加了定位和多播功能,提供更高的数据速率,在非锚点载波上进行寻呼和随机接入,增强连接态的移动性,支持更低UE功率等级等。


eMTC支持语音,传输速率较快,支持移动性,但模块成本相对较高,适合于可穿戴设备、健康监测、室内移动应用等。

NB-IoT和eMTC部署方式对比



NB-IoT部署方式


NB-IoT分为三种部署方式:独立部署(Stand alone)、保护带部署(Guard band)和带内部署(In-band)。




独立部署适用于重耕GSM频段,GSM的信道带宽为200KHz,这刚好为NB-IoT 180KHz带宽辟出空间,且两边还有10KHz的保护间隔。


保护带部署利用LTE边缘保护频带中未使用的180KHz带宽的资源块。


带内部署利用LTE载波中间的任何资源块。不过,在带内部署模式下,有些PRB,NB-IoT是不能占用的。

eMTC部署方式


eMTC支持与LTE共同部署,也支持独立部署。


主要采用LTE带内部署方式,支持TDD和FDD两种方式。eMTC和LTE在同一频段内协同工作,由基站统一进行资源分配,共用部分控制信道。因此,运营商可以在已有的LTE频段内直接部署eMTC,无需再分配单独的频谱。

NB-IoT和eMTC物理层技术对比


4.1 时频域结构对比




NB-IoT


下行:

NB-IoT下行与LTE一致,采用正交频分多址(OFDMA)技术,子载波间隔15kHz,时隙、子帧和无线帧长分别为0.5ms、1ms和10ms,包括每时隙的OFDM符号数和循环前缀(cyclic prefix)都是与LTE一样的。


NB-IoT载波带宽为180KHz,相当于LTE一个PRB(Physical Resource Block)的频宽,即12个子载波*15KHz/子载波=180KHz,这确保了下行与LTE的相容性。比如,在采用LTE载波带内部署时,可保持下行NB-IoT PRB与其它LTE PRB的正交性。


上行:

NB-IoT上行支持多频传输(multi-tone)和单频(single- tone)传输。




多频传输基于SC-FDMA,子载波间隔为15kHz,0.5ms时隙,1ms子帧(与LTE一样)。


单频传输子载波间隔可为15KHz以及3.75KHz,其中15KHz与LTE一样,以保持两者在上行的相容性;其中当子载波为3.75KHz时,其帧结构中一个时隙为2ms长(包含7个符号),15KHz为3.75KHz的整数倍,所以对LTE系统有较小的干扰。


eMTC


eMTC是LTE的演进功能,频域结构与LTE保持一致,在TDD及FDD LTE 1.4M~20MHz系统带宽上都有定义,但无论在哪种带宽下工作,eMTC的最大调度为6RB,3GPP定义将LTE系统宽带划分为一系列6个RB的窄带(NB),eMTC窄带划分方式如下图所示:




eMTC的帧结构与LTE一致。


声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 硬件
  • 原理图
  • 信号完整性
  • EMI
下载排行榜
更多
评测报告
更多
广告