反馈的四种类型
mouser 2021-08-05

负反馈在低频放大电路中的应用非常广泛,采用负反馈可以改善放大器的工作性能。

在其他科学技术领域中,它的应用也是很多的。例如自动调节系统,就是通过负反馈来实现的。

因此,研究负反馈就具有普遍意义,要研究应用负反馈,就必须首先熟悉负反馈的四种类型,并掌握其判别方法。

1.判别法介绍:

根据负反馈的四种类型:并联电压负反馈、串联电压负反馈、并联电流负反馈、串联电流负反馈。

在讲授完其定义后,可以按下述方法判别负反馈的类型。

(1)电压反馈和电流反馈的判别

若反馈信号和输出信号在放大电路上输出端引自三极管的同一极(如同是c极或同是e极)则为电压反馈,否则为电流反馈。

(2)并联反馈和串联反馈的判别

若反馈信号与输入信号在放大电路的输入端联接在三极管同一极(如同在b极)的为并联反馈,不在同一极(如输入信号接在b极,反馈信号接在e极)的则为串联反馈。

2.举例说明:

对下述四个例子分别用笔者的方法、假想短路法和定义法作以判别。

“”

举例1:

图1中,在放大电路输出端,反馈电阻RF与负载RL均接自三极管T的C极,为电压反馈;在放大电路输入端,反馈电阻RF与输入信号联接在三极管T的b极,为并联反馈,因此图1的反馈类型为并联电压负反馈。

假想短路法:图1中,将负载RL交点短路后,图1中RF的右端接地,此时RF不再是联接输入与输出的反馈,反馈信号不存在了。因而,该反馈是依赖于输出电压的,是电压反馈。

定义法:在图1中,在放大电路输出端,RF与RL同时接于一点时,RF所取信号是电压信号,为电压反馈,在输入端,RF与输入信号同接于T的b极,反馈信号与输入信号在输入端以电流的形式相加减,为并联反馈。

“”

举例2:

在图2所示放大电路中, 在输出端,RF与负载RL同时接于三极管T2的C极,为电压反馈;在输入端,RF与输入信号分别接于T1的e极和b极,为串联反馈。因而图2为串联电压负反馈。

假想短路法:在图2中,当负载 RL交流短路后,RF右端接地,此时RF不再是输出与输出之间的反馈,反信号不存在了。因此,该反馈是依赖于输出电压的,是电压反馈。

定义法: 在图2中,在输出端,RF 与RL同时接于T2的c极,RF所取信号是电压信号,为电压反馈;在输入端,RF与Vi分别接于T1的e极和b极,则净输入Vbe=Vi—Vf,反馈信号与输入信号在输入端以电压的形式相加减,为串联反馈。

“”

举例3:

在图3所示放大电路中, 在输出端,RF与RL分别接于三极管T2的e极和c极,为电流反馈:在输入端,RF与输入信号同时接于三极管T1的b极,为并联反馈,因此,图3中RF为并联电流负反馈。

假想短路法:在图3中,将负载 RL交流短路后,RF不受影响,即它是不依赖于输入电压的,为电流反馈。

定义法:RL与RF在输出端分别 接于三极管的T2的c极和e极,即使负载交流短路(U0=0)也不会影响到接于e极的RF,故RF所取信号来自输出电流,为电流反馈,在输入端,RF与输入信号同时接于T1的b极,反馈信号与输入信号在输入端以电流的形式相加减,即Ib1=Ii—If为并联反馈。

“”

举例4:

在图4所示放大电路中,接于三极管T3的c极和e极,为电流反馈:在输入端,反馈信号与输入信号分别接于T1的e极和b极,为串联反馈,因此图4中RF为级间的串联电流负反馈。至于Re1、Re2、Re3则是同一级内的串联电流负反馈。

假想短路法:在输出端,将RL交 流短路,不影响RF,因此RF的存在与输出电压无关,为电流反馈。

定义法:在图4放大电路的输出 端,RL与RF不接于三极管T3的同一极,即使交流短路(UO=0)也不会影响RF,故RF所取信号来自输出电流,为电流反馈,在输入端,RF与输入信号分别接于T1的e极和b极,则反馈信号与输入信号在输入端以电压的形式相加减,为串联反馈。

3.结论:

对于上述四个例子,笔者分别用自己的方法,假想短路法、定义法作了判别。从判别过程中不难看出,笔者的方法简单、快捷、准确。不管是对单级、两级,还是多级放大电路都不失为一种好方法。 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 模拟
  • 模电
  • 运放
  • 放大
  • 放大器电路,为什么要通过噪声的RMS值换算噪声的峰峰值?

    点击蓝字 关注我们     虽然在上一篇《来吧LTspice|算清放大器电路噪声RMS值的糊涂账》文中,分享了由放大器电压噪声密度、电流噪声密度参数,在具体电路中所导致噪声RMS值的计算方式与LTspice仿真方法。但是在电路中,对信号产生直接影响的是噪声峰峰值。  

    08-09
  • 关于数模转换的38个提问

    本文章是关于ADC/DAC设计经典问答,涵盖时钟占空比、共模电压、增益误差、微分相位误差、互调失真等常见问题。 1. 什么是小信号带宽(SSBW)? 小信号带宽(Small Signal Bandwidth (SSBW))是指在指定的幅值输入信号及特定的频率下,它的输出幅值比低频时

    05-10
  • 图集:20个常用模拟电路

    一、 桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、 电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐

    04-27
  • ADC输入接口设计六个条件

    采用高输入频率、高速模数转换器(ADC)的系统设计是一项具挑战性的任务。ADC输入接口设计有6个主要条件:输入阻抗、输入驱动、带宽、通带平坦度、噪声和失真。看看这里罗列的这六个条件,你都了解吗? 输入阻抗 输入阻抗是设计的特征阻抗。ADC的内部输入阻抗

    04-21
  • 运放的参数含义

    以后将在使用运放中接触到的关于运放的参数含义记在这里。 最近在使用一款PGA,在PGA输入端接地时发现输出总有个矩形波信号,放大1000倍后非常明显,怀疑是电源引起的干扰。开始的时候在输入正负电源处都 加了100uf和0.1的电容,但效果不明显,后来准备再电源

    04-13
  • 为什么要一点接地(图解)

    本文详细介绍了PCB板中模拟电路和数字电路共地和不共地的区别。 为了大家看的明白...我就用ORCAD画了两个电路,一个是一个普通的三极管模拟放大电路,另一个是数字电路振荡器...好了不废话了...上图... 下面是一点接地时候两个电路的电路图... 其实在原理图中没

    03-25
  • 相位补偿到底是什么鬼?

    帮朋友做镍氢充电器,利用镍氢电池充满电时电压有一个微小的下降这个特点来识别是否已经充满,比如1.2V的镍氢电池,快充满的时候,电压在1.35V,之后逐步下降,电压可以低于1.30V。所以需要单片机间歇检测电池两端电压,大概充3秒钟电再停止,之后检测电池两

    03-26
  • 运放手册之噪声篇解读

    1.一个有趣的问题? 2 个 1kΩ 电阻串联,与 1 个 2kΩ 电阻噪声一致吗? 2 个 500Ω 电阻并联,与 1 个 2kΩ 电阻噪声一致吗? 2.噪声的基本特性 1) 它的波形在任意时刻都是不确定的,因此它是广谱的,有低频也有高频; 2) 它的幅度又是有限制的,这与数学

    03-11
  • 模拟电路印制电路板布局走线要点

    有一个公认的准则就是在所有模拟电路印制电路板中,信号线应尽可能的短,这是因为信号线越长,电路中的感应和电容捐合就越多,这是不希望看到的。现实情况是,不可能将所有的信号线都做成最短,因而,布线时首先要考虑的就是最容易产生干扰的信号线。 在模拟

    03-10
  • RC电路详解

    1.RC电路的矩形脉冲响应 若将矩形脉冲序列信号加在电压初值为零的RC串联电路上,电路的瞬变过程就周期性地发生了。显然,RC电路的脉冲响应就是连续的电容充放电过程。如图所示。 若矩形脉冲的幅度为U,脉宽为tp。电容上的电压可表示为: 电阻上的电压可表示

    03-08
  • 设计实例:运放应用电路分析

    1、运放在有源滤波中的应用 上图是典型的有源滤波电路(赛伦-凯 电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R

    03-03
  • 通俗的角度看待拉普拉斯变换

    本文将从通俗的角度看待拉普拉斯变换。 发明者 奥列弗.赫维赛德,维多利亚时期英国人,全靠自学,听力残疾。很多人熟悉赫维赛德是因为MATLAB有一个赫维赛德(Heaviside)函数。 赫维赛德简化了麦克斯韦方程组:即变化的电场产生磁场,变化的磁场产生电场。让2

    03-03
下载排行榜
更多
广告
X
广告