设计一个自适应RF前馈放大器
互联网 2022-12-08

1.引言

现代无线通信的迅猛发展日益朝着增大信息容量,提高信道的频谱利用率以及提高线性度的方向发展。一方面,人们广泛采用工作于甲乙类状态的大功率微波晶体管来提高传输功率和利用效率;另一方面,无源器件及有源器件的引入,多载波配置技术的采用等,都将导致输出信号的互调失真。因此,在设计射频功率放大器时,必须对其进行线性化处理,以便使输出信号获得较好的线性度。一般常用的线性化技术包括:功率回退、预失真、前馈等,其中,功率回退技术能有效的改善窄带信号的线性度,而预失真技术和前馈技术,特别是前馈技术,由于其具有高校准精度,高稳定度以及不受带宽限制等优点,成为了改善宽带信号线性度时所采用的主要技术。本文首先简述了普通的前馈线性化技术,而后在此基础上进行改进,添加了自适应算法,并通过信号包络检测技术提取出带外信号进行调节,从而达到改善输出信号线性度的目的。

2.前馈基本原理

最基本的前馈放大器原理如图1所示。他由2个环路组成:环路1由功分器、主放大器、耦合器1、1、相移器1、延时线1、合成器1组成。输入的RF信号,即2个纯净的载波信号,经功分器后被分成两支路信号:上分支路为主功率放大器支路,纯净的RF载波信号经过该支路后产生放大后的载波信号和互调失真信号;下分支路为附支路,纯净的RF载波信号经过该支路后被延时,主功率放大器支路输出的非线性失真信号经衰减器1和相移器1后,与附支路输出的信号在合成器1中合成,调节衰减器1和相移器1使两支路信号获得相等的振幅,180'相位差以及相等的延迟。这时,就能有效地抵消主功率放大器支路的RF载波信号,而提取出由于主放大器非线性放大所产生的互调失真信号。因此,这一环路又称为RF载波信号消除环路。

环路2,也叫失真信号消除环路,由延时线2、辅助放大器、衰减器2、相移器2、耦合器2组成。同样也有两条分支支路:上分支路将主放大器输出的非线性失真信号延时后送人耦合器2;下分支路将环路1提取出的互调失真信号进行放大,衰减,相移后也送人耦合器2,调节衰减器2和相移器2,直到耦合器2输出的信号中互调失真信号最小,也就是IMD最小,则此时输出的信号就是放大的性的射频信号。

3. 自适应前馈射频功率放大器

3.1 自适应前馈电路的原理及算法

由于在前馈系统中对载波信号的抵消要求很高,内外界环境的变化,诸如:输入信号功率,直流偏置电压以及环境温度的变化,都容易造成载波信号抵消失灵。因此,引入自适应技术,以便能及时获得载波信号在振幅,相位以及延时上的匹配,就变得非常有必要了。自适应前馈系统的结构如图2所示。

他由3个环路构成:环路1主要用于提取互调失真信号,环路2主要用于消除失真信号,而环路3则主要用于检测互调失真信号功率。

设输入信号为υin(t),经主放大器后的输出信号为υρα(t),将υρα(t)耦合一部分到矢量调制器1,用复系数α代表矢量调制器1的调制系数,同时,将主放大器简化为一个无记忆的非线性模型,则其AM/AM及AM/PM传递函数就可以简单的用复电压增益G(χ)来表示,其中χ代表瞬时功率,那么从矢量合成器1输出的信号υα(t)就可以表示为:




在具体的实现结构上,在合成器1后面又添加了功分器2,其目的是对信号υd(t,g, ψ)进行功率检测,很明显,如果调节α使得合成器1两输入信号的幅度,相位以及延迟都达到匹配,那么这里检测到的功率将只有互调失真信号υe(t)的平均功率尸+而他是很小的,换句话说,如果检测到功分器2输出的功率足够的小,那么此时对α的调节就达到了最优,即RF载波信号已被最大程度的消除了,而保留下来的仅有互调失真信号υe(t)。

进入环路2的互调失真信号经过辅助放大器放大,矢量调制器2(其调制系数为复系数β)调节后,与经过延时线2的主放大器输出信号在合成器2中合成。该环路对互调失真信号的振幅及相位调节同样也采用自适应技术,其数学原理如上所述,但在实现的结构上,却与环路1不同,环路1是通过直接检测合成器1的输出信号来判定RF载波信号是否被抵消到最小值,而环路2在判定互调失真信号是否被抵消到最小值时,却需要引入第三个环路。

我们知道,对于相同功率的输出信号,线性信号的包络要大于非线性信号的包络,而二者的包络差值信号就是互调失真信号,最大限度减小其包络差值信号,就能最大程度地改善输出信号的线性度,从而减小IMD。环路3的工作原理正在于此。他处理的两路信号一路是线性信号,即经过延时线3及功分器4的RF载波信号,另一路是非线性信号,即经前馈系统环路1和环路2后由合成器2输出的信号。首先,环路对两路信号的合成信号进行功率检测,并调节矢量调制器3,直到检测到的功率最小,这时,就可以认为线性信号与非线性信号具有了相同的载波输出功率。而后,再对两路信号分别进行包络检测,提取包络差值信号,将此包络差值信号作用于矢量调制器2,即不断调节小最终使带外互调失真信号减至最小,这时就会获得高线性度的输出信号。

3.2 计算机仿真

应用一个峰值功率为180W的LDMOS场效应晶体管在计算机仿真系统上设计了一个25 W的功率放大器,并对其输入两个频率间隔为1MHz的载波信号,用以产生三阶及五阶互调失真信号。图3为在未采用自适应前馈技术时信号的输出情况。此时IMD3只能达到-55dBc左右,IMD5只能达到-56dBc左右,而图4则是采用该项技术后信号的输出情况。此时IMD3可达到-72 dBc左右,IMD5可达到-76dBc左右,其改善程度显而易见。

4.总结

本文采用自适应前馈技术并结合包络检测技术来设计射频功率放大器。由于该项技术考虑到实际中可能遇到的问题,从而对复杂问题进行简化,不仅从理论上,而且从实践上证实了他的可实现性。

计算机模拟仿真试验表明:这种自适应前馈技术的确能够有效的改善功率放大器的非线性失真。当然,对该项技术的应用还有待进一步加强。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • RF
  • 射频
  • 通信
  • 无线
  • 以太网硬件电路如何在PCB上实现

    我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,

    7小时前
  • 支持4个双天线DUT的非信令2G/3G/LTE无线综测解决方案

    智能手机和平板电脑的旺盛市场需求迫使生产线寻求更大吞吐量的无线综测解决方案,专攻生产线测试解决方案的Litepoint公司去年6月14日应时而动,推出了同时支持1、4和8部DUT的2G/3G/LTE智能手机和平板电脑无线综测仪IQxstream。 三个月之后,安捷伦生产线测试事业部也宣布推出同时支持4个双天线和8个单天线智能手机或平板电脑DUT的非信令2G/3G/LTE无线综测解决方案(E6607...

    01-11
  • 车载GPS接收机测试

    车载 GPS 导航系统是汽车电子的重要应用,随着汽车进入普通家庭并迅速普及,对车载 GPS 的需求也在急速增长。车载 GPS 导航系统由车载 GPS 接收机和导航软件组成,其中车载 GPS 接收机的性能指标直接影响到导航应用的用户体验,是影响产品性能的关键部分。目前车载 GPS 接收机测试并没有统一的标准,与行业大量应用的手机 GPS 测试相比,需要增加面向汽车应用的测试要求,形成更加全面的符合汽...

    01-11
  • PXA实时频谱分析 应对多制式、高速率通信系统表征和故障诊断

    在航空航天、国防和无线通信等领域中,不断涌现出来的诸多挑战致使系统表征和故障诊断变得更加困难。以雷达和电子战(EW)系统为例,这些系统正变得动态范围更大,运动速度更快,覆盖战场上的更大空间。这种多制式、高速率通信系统的扩展提升了互操作性问题的出现概率。 随着信号变得更加复杂和灵敏,无间隙测量技术——实时频谱分析和时间捕获——逐步获得主流应用的认可。Agilent PXA 信号分析仪更进一步将这些新...

    01-11
  • MIMO波束赋形及其对TD-LTE测试的影响

    1  波束赋形基础知识     “波束赋形”一词有时会被滥用,从而引起混淆。从技术上来说,波束赋形和波束导向一样简单,即两个或更多的天线以受控的延迟或相位偏移来发射信号,从而创造出定向的建设性干涉波瓣(见图1)。 图1 简单波束导向创建的波瓣     TD-LTE系统中所用的波束赋形是一个相对更加复杂的命题,部分原因是终端设备具有移动的特性。一种称为Eigen波束赋形的技术会使用关于RF信道的信...

    01-11
  • 述评SPARQ系列网络分析仪之三:关于S参数(上)

    无源网络如电阻,电感,电容,连接器,电缆,PCB线等在高频下会呈现射频、微波方面的特性。S参数是表征无源网络特性的一种模型,在仿真中即用S 参数来代表无源网络,因此,S参数在射频、微波和信号完整性领域的应用都很广泛。本文将分上、下两篇分别从S参数的定义、S参数的表达方式、S参数的特性、混合模式S参数、S参数测量等多个方面介绍S参数的一些基本知识。 一、S参数的定义 我喜欢找到一句话来概括一个术语。...

    01-11
  • 航空航天和国防应用中的射频干扰信号流化、分析与回放

    理想状态下,接收机将使用砖墙式滤波器,放大器和混频器将永不失真,命令中心始终协调频谱运行,“堵塞”是一个仅会在早餐和举行音乐会时出现的术语。此时,干扰将会出现。 干扰分为有意干扰和无意干扰两类。无意干扰是射频环境的一部分: 手机、无线链路、无绳电话、地面电视、医疗电子设备等都会产生无意干扰。有意干扰是专门创建的信号,目的是破坏目标接收机的运行。我们重点关注有意干扰,最终目标是抵制多余信号。建议的解...

    01-11
  • 运用NI USRP打造出经济实惠的8x8 MIMO测试台

    此技术文章说明了LabVIEW 与USRP 平台的使用方式,进而打造出相位同调(Phase Coherent) 的MIMO 测试台,可以从2x2 扩充为8x8 天线设定,并且用来测试多种MIMO 与多用户的通信研究项目。 1. 8x8 MIMO 简介 现在Single-Link 单连结MIMO (多重输入与多重输出) 通信的概念可说是非常普遍[1],新的无线标准也陆续采用此技术。 比如说LTE A...

    01-11
  • 八天线LTE系统测试挑战

    TD-LTE、FDD-LTE和LTE-Advanced(LTE-A)无线技术使用了几种不同的多种输入多路输出(MIMO)技术。鉴于MIMO系统的复杂性正在日益提高,因此相关的测试方法也将更具挑战性。例如,当前已部署的MIMO技术利用两具天线来改善信道性能。还有一些LTE社区已率先开始采用八天线技术来实现更高的性能。这些先进的技术将使测试方法的选择变得更为至关重要。 要想找到正确的方法,必须要充分理...

    01-11
  • 用于汽车网络开发的局域互联网(LIN)总线详解

    局域互联网(LIN)是一种低成本的嵌入式网络标准,用于连接智能设备。LIN最常见于汽车工业。1.LIN概述    局域互联网(LIN)总线是为汽车网络开发的一种

    01-11
  • 深入洞悉LTE设计与测试

    基于 W-CDMA 的第三代 (3G) 无线系统已在全球广泛部署。W-CDMA 技术通过在下行链路和上行链路模式中提供高速分组接入(HSPA) 技术,始终保持强有力的竞争水平。为确保 3G 系统在未来的竞争力,3GPP 标准 Release 8 首次对 UMTS LTE ( 长期演进 ) 做出了详细规定,它将覆盖未来十年“移动宽带业务”新兴需求的计划。 作为全球测试与测量解决方案的领导者,安捷伦科...

    01-10
  • 浅谈扫频仪在LTE清频测试中的运用

    随着4G在全国各地的不断升温,TD-LTE在全国多个城市已初具规模,越来越多城市将新建LTE基站。对于TD-LTE网络占用的各频段中存在其他网络制式信号占用和外部干扰,应在未建站期间或建网初期展开清频测试,查找和定位干扰来源,净化频段,降低底噪,减轻后续网优工作的难度。LTE扫频仪作为常规路测仪表,比常规频谱仪更适用于清频测试,能以二维频谱图、三维频谱图、采样点信号强度轨迹图等形式展现测量结果,并...

    01-10
下载排行榜
更多
广告